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Cem Ünsalan
Marmara University
Istanbul, Turkey
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Migros Ticaret AS
Istanbul, Turkey

ISBN 978-3-030-88438-3 ISBN 978-3-030-88439-0 (eBook)
https://doi.org/10.1007/978-3-030-88439-0

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-88439-0


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Microcontroller as Embedded System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 About the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Microcontroller Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Central Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 General-Purpose Input and Output Ports . . . . . . . . . . . . . . . . . 14
2.1.4 Clock and Timer Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Analog Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Digital Communication Modules . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Other Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 The Arm® Cortex™-M4 Instruction Set . . . . . . . . . . . . . . . . . 16
2.2.2 Executing Machine Language Code in the

Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The STM32F4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 General Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Pin Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Powering the Board and Programming the

Microcontroller on It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Software Development Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 The STM32CubeIDE Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Downloading and Installing STM32CubeIDE . . . . . . . . . . . 28
3.1.2 Launching STM32CubeIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Creating a New Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.4 Building, Debugging, and Executing the Project . . . . . . . . 31

v



vi Contents

3.1.5 Using STM32CubeMX to Modify Hardware of
the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Mbed and Mbed Studio Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Mbed on Web. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Managing a Project in Mbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Mbed Studio on Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Managing a Project in Mbed Studio . . . . . . . . . . . . . . . . . . . . . . 39

3.3 MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 About Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Python for Microcontrollers: MicroPython . . . . . . . . . . . . . . 42
3.3.3 Setting up MicroPython on the STM32F4

Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.4 MicroPython Working Principles. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 Using MicroPython on the STM32F4 Microcontroller. . 43

3.4 Application: Tools for Analyzing the Generated Code. . . . . . . . . . . . 47
3.4.1 Analyzing the C Code in STM32CubeIDE . . . . . . . . . . . . . . 47
3.4.2 Analyzing the C++ Code in Mbed Studio. . . . . . . . . . . . . . . . 50
3.4.3 Analyzing the MicroPython Code . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Digital Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Bit Values as Voltage Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Interfacing Voltage Levels with the Microcontroller . . . . . . . . . . . . . . 54

4.2.1 Digital Input from a Switch or Button . . . . . . . . . . . . . . . . . . . 54
4.2.2 Digital I/O with High Voltage Values . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Digital Output to a Load Requiring High Current

and Voltage Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Digital I/O Setup on the STM32F4 Microcontroller . . . . . . . . . . . . . . 62

4.3.1 Circuit Diagram of a Pin and Its Setup via
Associated Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 GPIO Registers in Memory Map of the STM32F4
Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Setting Up GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Digital I/O Usage on the STM32F4 Microcontroller . . . . . . . . . . . . . 67

4.4.1 C Language Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 C++ Language Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.3 MicroPython Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Application: Digital Input and Output Operations in the
Robot Vacuum Cleaner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Contents vii

5 Interrupts and Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 The Interrupt Concept in Embedded Systems . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Interrupts in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.2 Interrupts in the STM32F4 Microcontroller . . . . . . . . . . . . . 83

5.2 Interrupt Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . 87
5.2.1 Interrupt Setup via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Interrupt Setup via C++ Language . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Interrupt Setup via MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Interrupt Usage in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . 91
5.3.1 Interrupt Usage via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Interrupt Usage via C++ Language. . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Interrupt Usage via MicroPython. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Power Management in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.1 Importance of Power Management in Embedded

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 The Link Between Power Management and

Interrupt Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.3 Battery as Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Power Management in the STM32F4 Microcontroller. . . . . . . . . . . . 98
5.5.1 Power Management Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 Power Supply Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.3 Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.4 STM32CubeMX for Power Usage Analysis . . . . . . . . . . . . . 101

5.6 Usage of Power Modes in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.1 Power Modes in C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2 Power Modes in C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.3 Power Modes in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Application: Interrupt-Based Operations and Power
Management for the Robot Vacuum Cleaner . . . . . . . . . . . . . . . . . . . . . . 108

5.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Timing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1 Clock Signals in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 What Is a Clock Signal? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 Oscillator as the Clock Signal Source . . . . . . . . . . . . . . . . . . . . 114
6.1.3 Managing Clocks in the STM32F4 Microcontroller . . . . 116

6.2 Timers in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.1 What Is a Timer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.2 Introducing Timers in the STM32F4 Microcontroller . . . 119
6.2.3 Base Timers in the STM32F4 Microcontroller . . . . . . . . . . 120
6.2.4 System Timer in the STM32F4 Microcontroller. . . . . . . . . 125
6.2.5 Watchdog Timers in the STM32F4 Microcontroller . . . . 125
6.2.6 Real-Time Clock in the STM32F4 Microcontroller . . . . . 127



viii Contents

6.2.7 Advanced Base Timer Operations in the
STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Timer Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . 128
6.3.1 Timer Setup via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.2 Timer Setup via C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 Timer Setup via MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Timer Usage in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . 136
6.4.1 Timer Usage in C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.2 Timer Usage in C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4.3 Timer Usage in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Application: Timing Operations in the Robot Vacuum Cleaner . . 151
6.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conversion Between Analog and
Digital Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.1 Analog and Digital Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 Analog Values in Physical Systems . . . . . . . . . . . . . . . . . . . . . . 155
7.1.2 Digital Values in Embedded Systems . . . . . . . . . . . . . . . . . . . . 156
7.1.3 Digital Values in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2 Analog to Digital Conversion in Embedded Systems . . . . . . . . . . . . . 158
7.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.3 ADC Operation in the STM32F4 Microcontroller . . . . . . 161

7.3 ADC Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . 166
7.3.1 ADC Setup via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3.2 ADC Setup via C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.3.3 ADC Setup via MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4 ADC Usage in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . 172
7.4.1 ADC Usage in C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4.2 ADC Usage in C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4.3 ADC Usage in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.5 Digital to Analog Conversion in Embedded Systems . . . . . . . . . . . . . 187
7.5.1 Zero-Order Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.5.2 Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.5.3 DAC Operation in the STM32F4 Microcontroller . . . . . . . 191

7.6 DAC Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . 193
7.6.1 DAC Setup via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.6.2 DAC Setup via C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.6.3 DAC Setup via MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.7 DAC Usage in the STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . 198
7.7.1 DAC Usage in C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.7.2 DAC Usage in C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.7.3 DAC Usage in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



Contents ix

7.8 Application: ADC and DAC Operations in the Robot
Vacuum Cleaner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.9 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8 Digital Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.1 Background on Digital Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.1.1 Data, Frame, and Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
8.1.2 Serial and Parallel Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.1.3 Synchronous and Asynchronous Data Transfer. . . . . . . . . . 212
8.1.4 Signal Representation and Line Formations . . . . . . . . . . . . . 213
8.1.5 Data Encoding Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.1.6 Simplex, Half, and Full Duplex Communication . . . . . . . . 218
8.1.7 Master and Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.1.8 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.2 Universal Asynchronous Receiver/Transmitter . . . . . . . . . . . . . . . . . . . . 218
8.2.1 UART Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.2.2 UART Modules in the STM32F4 Microcontroller . . . . . . 219
8.2.3 UART Setup in the STM32F4 Microcontroller . . . . . . . . . . 221
8.2.4 UART Usage in the STM32F4 Microcontroller . . . . . . . . . 224

8.3 Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3.1 SPI Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3.2 SPI Modules in the STM32F4 Microcontroller . . . . . . . . . . 234
8.3.3 SPI Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . 236
8.3.4 SPI Usage in the STM32F4 Microcontroller . . . . . . . . . . . . 238

8.4 Inter-integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.4.1 I2C Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.4.2 I2C Modules in the STM32F4 Microcontroller . . . . . . . . . . 246
8.4.3 I2C Setup in the STM32F4 Microcontroller . . . . . . . . . . . . . 248
8.4.4 I2C Usage in the STM32F4 Microcontroller . . . . . . . . . . . . 251

8.5 Controller Area Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.5.1 CAN Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.5.2 CAN Modules in the STM32F4 Microcontroller . . . . . . . . 263
8.5.3 CAN Setup in the STM32F4 Microcontroller . . . . . . . . . . . 265
8.5.4 CAN Usage in the STM32F4 Microcontroller. . . . . . . . . . . 267

8.6 Universal Serial Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8.6.1 USB Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.6.2 USB Modules in the STM32F4 Microcontroller . . . . . . . . 278
8.6.3 USB Setup in the STM32F4 Microcontroller . . . . . . . . . . . . 279
8.6.4 USB Usage in the STM32F4 Microcontroller . . . . . . . . . . . 282

8.7 Other Digital Communication Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.7.1 SD Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.7.2 Inter-IC Sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



x Contents

8.8 Application: Digital Communication for the Robot
Vacuum Cleaner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

8.9 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

9 Memory Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.1 Memory Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.1.1 Bus Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.1.2 Memory in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.1.3 RAM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.1.4 Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9.2 Memory Management in C and C++ Languages . . . . . . . . . . . . . . . . . . 298
9.2.1 RAM Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
9.2.2 Memory Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
9.2.3 Pointer-Based Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.2.4 Local, Global, and Static Variables . . . . . . . . . . . . . . . . . . . . . . . 307

9.3 Memory Management in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.3.1 RAM Management During Compilation Stage . . . . . . . . . . 308
9.3.2 Effective RAM Usage During Code Execution . . . . . . . . . . 309
9.3.3 Local and Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

9.4 Direct Memory Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.4.1 The DMA Controller in the STM32F4

Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.4.2 DMA Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.3 DMA Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.4 DMA Setup in the STM32F4 Microcontroller. . . . . . . . . . . 316
9.4.5 DMA Usage in the STM32F4 Microcontroller . . . . . . . . . . 317

9.5 Flexible Memory Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.5.1 FMC Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.5.2 FMC Setup in the STM32F4 Microcontroller . . . . . . . . . . . 322
9.5.3 FMC Usage in the STM32F4 Microcontroller. . . . . . . . . . . 328

9.6 Application: Memory-Based Operations in the Robot
Vacuum Cleaner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9.7 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

10 Real-Time Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
10.1 Fundamentals of RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

10.1.1 RTOS Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
10.1.2 RTOS Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

10.2 FreeRTOS and Mbed OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.2.1 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.2.2 FreeRTOS Project Setup in STM32CubeIDE . . . . . . . . . . . 344
10.2.3 Mbed OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
10.2.4 First Mbed OS Project in Mbed Studio . . . . . . . . . . . . . . . . . . 347



Contents xi

10.3 Task and Thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.3.1 Task Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.3.2 Task in FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
10.3.3 Thread in Mbed OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

10.4 Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
10.4.1 Event Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
10.4.2 Event in FreeRTOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
10.4.3 Event in Mbed OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

10.5 Mutex and Semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.5.1 Mutex Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.5.2 Semaphore Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.5.3 Mutex and Semaphore in FreeRTOS . . . . . . . . . . . . . . . . . . . . . 371
10.5.4 Mutex and Semaphore in Mbed OS . . . . . . . . . . . . . . . . . . . . . . 378

10.6 Queue and Mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.6.1 Queue Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.6.2 Mail Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
10.6.3 Queue and Memory Pool in FreeRTOS . . . . . . . . . . . . . . . . . . 384
10.6.4 Queue and Mail in Mbed OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

10.7 Software Timers in FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.7.1 Software Timer Setup and Timer Functions . . . . . . . . . . . . . 404
10.7.2 Software Timer Usage Examples . . . . . . . . . . . . . . . . . . . . . . . . . 405

10.8 Memory Management in RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
10.8.1 Memory Management in FreeRTOS . . . . . . . . . . . . . . . . . . . . . 406
10.8.2 Memory Management in Mbed OS . . . . . . . . . . . . . . . . . . . . . . 409

10.9 Application: RTOS-Based Implementation of the Robot
Vacuum Cleaner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

10.10 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

11 LCD, Touch Screen, and Graphical User Interface Formation . . . . . . . 415
11.1 LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

11.1.1 LCD Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
11.1.2 LCD Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
11.1.3 Connecting the LCD to an Image Source . . . . . . . . . . . . . . . . 417
11.1.4 LCD on the STM32F4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

11.2 Touch Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
11.2.1 Touch Screen Working Principles . . . . . . . . . . . . . . . . . . . . . . . . 419
11.2.2 Touch Screen on the LCD of the STM32F4 Board . . . . . . 420

11.3 Hardware Modules in the STM32F4 Microcontroller for
LCD and Touch Screen Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.3.1 LCD-TFT Display Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
11.3.2 DMA2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

11.4 Setting Up the LCD on the STM32F4 Board . . . . . . . . . . . . . . . . . . . . . . 424
11.4.1 Setup for SPI-Based Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424



xii Contents

11.4.2 Setup for LTDC-Based Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
11.5 Usage of the LCD on the STM32F4 Board . . . . . . . . . . . . . . . . . . . . . . . . 426

11.5.1 Usage of the LCD via SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
11.5.2 Usage of the LCD via LTDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

11.6 Setting Up the Touch Screen on the LCD of STM32F4 Board . . . 437
11.6.1 Setup via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
11.6.2 Setup via C++ Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

11.7 Usage of the Touch Screen on the LCD of STM32F4 Board . . . . . 438
11.7.1 Usage via C Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
11.7.2 Usage via C++ Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

11.8 Graphical User Interface Formation via TouchGFX . . . . . . . . . . . . . . 441
11.8.1 Installing TouchGFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
11.8.2 Setting Up TouchGFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
11.8.3 Using TouchGFX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

11.9 Application: Improving the Stand-Alone Remote
Controller via GUI Formation and Touch Screen Usage. . . . . . . . . . 451

11.10 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

12 Introduction to Digital Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
12.1 About Digital Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

12.1.1 Mathematical Definition of the Digital Signal . . . . . . . . . . . 455
12.1.2 Representing the Digital Signal in an Embedded System 456
12.1.3 Forming an Actual Digital Signal from the

STM32F4 Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.2 Transferring the Digital Signal Between the PC and

STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
12.2.1 Setup in the STM32F4 Microcontroller Side . . . . . . . . . . . . 461
12.2.2 Setup in the PC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

12.3 About Digital Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
12.3.1 Mathematical Representation of the Digital System . . . . 465
12.3.2 Linear and Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . 465
12.3.3 Representing the Digital System in an Embedded

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
12.4 Digital Signals and LTI Systems in Complex Domain . . . . . . . . . . . . 467

12.4.1 The z-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
12.4.2 Discrete-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 468

12.5 Processing Analog Audio Signals on the STM32F4
Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
12.5.1 Acquiring the Audio Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
12.5.2 Forming an Equalizer by Digital Filters. . . . . . . . . . . . . . . . . . 472
12.5.3 Feeding the Equalized Digital Signal to Output . . . . . . . . . 475
12.5.4 Final Form of the Overall System . . . . . . . . . . . . . . . . . . . . . . . . 476

12.6 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479



Contents xiii

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

13 Introduction to Digital Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
13.1 About Digital Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

13.1.1 The Control Action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
13.1.2 Representing the Digital Controller in an

Embedded System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
13.2 Transfer Function Based Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

13.2.1 Open-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
13.2.2 Closed-Loop Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
13.2.3 Designing a Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

13.3 PID Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
13.3.1 General Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
13.3.2 PID Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
13.3.3 Implementing the PID Controller on the

STM32F4 Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
13.4 PID Control of a DC Motor by the STM32F4 Microcontroller . . 496

13.4.1 DC Motor as the System to Be Controlled . . . . . . . . . . . . . . . 497
13.4.2 Encoder as the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
13.4.3 Speed Control of the DC Motor . . . . . . . . . . . . . . . . . . . . . . . . . . 499

13.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

14 Introduction to Digital Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
14.1 About Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

14.1.1 Mathematical Representation of the Digital Image . . . . . . 507
14.1.2 Grayscale and Color Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
14.1.3 Representing the Digital Image in the STM32F4

Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
14.2 Image Transfer Between the PC and STM32F4

Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
14.2.1 Setup in the PC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
14.2.2 Setup and Display in the STM32F4

Microcontroller Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
14.3 Digital Camera as the Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

14.3.1 Working Principles of a Digital Camera . . . . . . . . . . . . . . . . . 519
14.3.2 Image Data Representation in Digital Cameras. . . . . . . . . . 522
14.3.3 The OV7670 Camera Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
14.3.4 Setting Up the OV7670 Camera Module. . . . . . . . . . . . . . . . . 524

14.4 Digital Camera Interface Module in the STM32F4
Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
14.4.1 Working Principles of the DCMI Module. . . . . . . . . . . . . . . . 528
14.4.2 Setting Up the DCMI Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530



xiv Contents

14.5 Image Acquisition via Digital Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
14.5.1 Acquiring the Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
14.5.2 Displaying the Acquired Image on LCD . . . . . . . . . . . . . . . . . 533
14.5.3 Transferring the Acquired Image to PC . . . . . . . . . . . . . . . . . . 535
14.5.4 Format Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

14.6 Pixel-Based Digital Image Processing Operations . . . . . . . . . . . . . . . . 544
14.6.1 Obtaining the Negative Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
14.6.2 Intensity Transformation Applied to the Image. . . . . . . . . . 547
14.6.3 Thresholding the Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

14.7 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

15 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
15.1 Assembly Language Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

15.1.1 Forming a Complete Assembly Code . . . . . . . . . . . . . . . . . . . . 555
15.1.2 Creating an Assembly Project in STM32CubeIDE. . . . . . 556
15.1.3 Inline Assembly in C Language . . . . . . . . . . . . . . . . . . . . . . . . . . 558
15.1.4 Inline Assembly in C++ Language . . . . . . . . . . . . . . . . . . . . . . . 559
15.1.5 Inline Assembly in MicroPython . . . . . . . . . . . . . . . . . . . . . . . . . 560

15.2 Customizing the MicroPython Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . 561
15.2.1 Necessary Settings to Modify the MicroPython

Firmware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
15.2.2 Precompiling Scripts Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
15.2.3 Frozen Bytecode Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
15.2.4 Adding C Functions to MicroPython. . . . . . . . . . . . . . . . . . . . . 563

15.3 Mbed Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565



1Introduction

1.1 Embedded Systems

The definition “embedded system” covers a broad range of devices used in almost all
parts of our lives. Therefore, they have become indispensable tools in today’s world.
Moreover, as the devices we use become more intelligent, they will consist of one or
many embedded systems in them. Since there are various embedded systems used in
operation, it may be unfair to give a strict and limiting description for such a broad
range of devices. However, we can make some general definitions as follows.

We can think of an embedded system as a computing device developed for solv-
ing a specific problem. To do so, it interacts with the environment as acquiring data,
processes the acquired data, and produces the corresponding output accordingly.
To perform all these operations, joint usage of hardware and software becomes
mandatory. Hence, the designer developing the embedded system must know how
the hardware works and how the dedicated software should be formed for it.
More importantly, the designer should grasp the idea of jointly using hardware and
software to get the best from the embedded system.

The embedded system will be working in stand-alone form most of the times.
It may communicate with other nearby devices as with Internet of Things (IoT)
applications. However, this does not mean that there is a server and all embedded
systems connect to it to perform their operations. On the contrary, each embedded
system can work in stand-alone form and share data to perform a complex operation.

Since the embedded system works in stand-alone form most of the times, it
depends on battery or energy harvesting module to operate. Therefore, energy
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dissipation becomes one of the main concerns in embedded system development.
To note here, some embedded systems may be supplied by the main power line.
However, the recent trend is forming a system such that it works independently. This
leads to its deployment to remote locations where no main power line is available.

From our perspective, we can group embedded systems based on their hardware
properties as follows. Field-programmable gate arrays (FPGA) form the first group.
They provide the most flexible but hard to master hardware. Due to their properties,
they have been extensively used in forming custom embedded systems at gate level.
Therefore, we do not program an FPGA. Instead, we describe the system to be
constructed by a hardware description language such as Verilog and VHDL.

The second hardware group in forming embedded systems consists of microcon-
trollers. A microcontroller has limited memory and computation power. However,
it can be programmed in assembly or high-level language to perform the operations
on it. The microcontroller also offers a cheap and energy efficient solution for
embedded system formation. The most well-known microcontroller systems can be
counted as Arduino and Arm® Cortex™-M based ones.

The microprocessors form the third embedded system group. In these, embedded
Linux is used most of the times to control and organize operations. This also leads to
graphical user interface (GUI) usage on them. Microprocessors also have fairly high
memory and computation power compared to microcontrollers. However, energy
dissipation and stand-alone usage are the main bottlenecks for them. The most well-
known microprocessor-based embedded systems are the Raspberry Pi family and its
clones.

The fourth hardware group for embedded systems consists of system on chip
(SoC) devices. They have FPGA and microprocessor modules on them. Hence, they
aim to benefit from both device properties. However, SoC programming and usage
are still not as easy as a microcontroller (or microprocessor).

The mentioned four hardware groups have their dedicated development boards.
Hence, they can be used easily in developing a prototype embedded system. They
use cross compilers such that the code is written and debugged on PC. Then, it is
embedded on the system. To note here, there is no GUI on an embedded system by
default except embedded Linux-based boards.

Recently, new hardware options have emerged for embedded systems. One
option is the joint usage of a microcontroller and microprocessor on the same dye.
STMicroelectronics recently offered such devices containing both Arm® Cortex™-
A and Cortex™-M CPUs. Hence, each can be used for specific applications.
The next option is the development boards consisting of graphical processing
units (GPU). These devices allow parallel processing via high-level programming
languages. The recent advances in deep learning and neural networks also led to
devices consisting of neural processing units (NPU or TPU) dedicated to neural
network implementation. Such units are becoming part of almost all embedded
systems nowadays.

Based on this brief summary, we expect two main trends for embedded system
hardware in the future. The first trend is that we will see hardware components for
embedded system implementation to become cheaper, be more powerful, consume
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less energy, and be easy to use. The second trend will be merging such devices.
Hence, we expect to have an embedded system consisting of a microcontroller,
microprocessor, GPU, and FPGA modules. They will work together to solve the
problem at hand.

1.2 Microcontroller as Embedded System

As emphasized in the previous section, there are several hardware options which can
be used in forming an embedded system. Although each group has its advantages,
we picked the microcontroller as the embedded system in this book for the following
reasons. Microcontrollers are simpler to program. They have a fairly wide usage
area. More importantly, they can be handled by a wide range of audience. In fact,
the most well-known example of this usage is the Arduino platform. The reader
may ask the question “Then, why is the Arduino platform not being used in this
book?” We deliberately used the STM32F429ZIT6 microcontroller based on the
Arm® Cortex™-M architecture such that we can explain the working principles
of microcontrollers in detail. Besides, we will introduce the Mbed platform which
works similar to the Arduino platform. One final note, most of the concepts to
be explained on microcontrollers in this book can be applied to other embedded
system hardware groups with minor modification. Therefore, the reader can expand
the usage area of these concepts. However, they should first be mastered on
microcontrollers as explained in this book.

Each microcontroller family has its own programming language called assembly.
The assembly language allows the programmer to reach and modify the micro-
controller hardware at its lowest level. Although this is a fairly powerful tool,
there are some shortcomings as well. First and most important of all, an assembly
code written for a microcontroller family cannot be ported to a microcontroller
from another family. Besides, writing and debugging code in assembly language is
tedious. Hence, C became the de-facto programming language for microcontrollers.
It offers flexibility in portability (to some degree). Besides, recent integrated devel-
opment environments allow the user to control and debug the code running on the
microcontroller fairly easily. As explained in the previous paragraph, the Arduino
platform offers a unique option such that the code written there can be implemented
on any microcontroller supporting the platform. Likewise, Arm® introduced the
Mbed development environment for its microcontrollers. This platform depends
on C++ language to operate. Hence, C++ has also become the preferred language
for microcontrollers. Finally, MicroPython has emerged as the implementation of
Python language on selected microcontrollers. It offers a unique property such that
a software programmer fluent in Python programming on PC can start programming
the microcontroller with the same syntax and rules. Besides, MicroPython also
provides a unified approach among microcontrollers from different vendors. As
an example, the microcontrollers in the Arduino and Mbed platforms can be
programmed in the same way in MicroPython (as long as they support this option).
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To note here, it is not always possible to use all microcontroller hardware directly
in MicroPython. Therefore, the reader should take this into account while using it.

In this book, we will use C, C++, and MicroPython languages to program our
microcontroller. While doing so, we will handle the hardware-based topics by
the help of C language. Then, we will generalize these topics in C++ language.
Finally, we will provide the MicroPython version of the code (if possible). Hence, a
programmer expert in C language and a causal user can benefit from the book.

The STM32F429ZIT6 microcontroller to be used in the book cannot be used
alone unless a dedicated development or specific board is constructed for it. The
best option for us, as early learners, is using the available 32F429IDISCOVERY kit
for this purpose. Therefore, we will introduce the embedded system properties using
both the microcontroller and the kit.

We should also explain why the Arm® Cortex™-M architecture-based
STM32F429ZIT6 microcontroller is picked in this book. Arm® Cortex™-M
architecture has gained dominance among microcontrollers. The main reason is that
Arm® forms the IP and companies use it with their custom peripheral units to form
a physical microcontroller. Hence, a large ecosystem has been formed. Besides,
Arm® Cortex™-M architecture offers advanced properties in low power usage.
As explained before, this is extremely important for stand-alone embedded system
implementation. Related to this, Arm® declared that its partners have shipped more
than 180 billion Arm®-based chips [1]. Arm® also predicts that a trillion new IoT
devices will be produced between now and 2035 [2]. Although this is a prediction, it
shows the potential of growth in the embedded system market. Besides, it indicates
that we will be surrounded by more and more embedded systems in the near future.
Hence, today’s students (from any discipline), new graduates, and experts should
grasp the ideas in this book. Hence, they can get prepared to the opportunities in the
job market as for today and the future.

1.3 About the Book

The aim of this book is teaching the embedded system concepts through micro-
controller usage. Therefore, we follow the method of learning by doing as in all
our previous books on this topic. We also picked the thematic application “robot
vacuum cleaner” throughout the book. We explained components of this robot (both
in hardware and software) as the end of chapter applications. Hence, the reader can
see the overall layout of a complex embedded system formed step by step by its
subparts.

We can list the topics to be covered in this book as follows. We will make
an introduction by handling the microcontroller architecture in Chap. 2. Here, we
will overview the CPU, memory, input and output ports, timer, ADC, DAC, and
digital communication modules of the STM32F429ZIT6 microcontroller. We will
briefly introduce the Arm® assembly language programming in this chapter as well.
Finally, we will provide detailed information on the 32F429IDISCOVERY kit to be
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used throughout the book. In other words, the second chapter summarizes properties
of the microcontroller to be used throughout the book.

We will evaluate the development environments to program the microcontroller
in Chap. 3. To do so, we will introduce the STM32CubeIDE, Mbed, Mbed Studio,
and MicroPython programming environments. STM32CubeIDE can be used to pro-
gram the microcontroller via C and assembly languages. These are valuable options.
However, programming the microcontroller this way requires expertise. Instead, the
Mbed platform simplifies life for the programmer. Therefore, we will introduce
the web-based Mbed and its desktop version Mbed Studio next. The drawback
of these options is the limitation on reaching low-level hardware properties of
the microcontroller. Recently introduced MicroPython, as the implementation of
Python language for microcontrollers, also offers a good option to program the
microcontroller. Hence, we will cover it in Chap. 3.

We will introduce methods to interact the microcontroller with the outside world
in Chap. 4. Here, we will focus on digital input and output extensively. In Chap. 5,
we will focus on the interrupt concept which is extremely important in embedded
systems. Therefore, we will consider the occurrence of interrupts as well as ways to
handle them. We will also cover low power modes of the microcontroller in Chap. 5.
These will help us to run the microcontroller with minimum power dissipation
during its operation. Then, we will consider time-based operations in Chap. 6 in
connection with the timer, real-time clock, and watchdog timer modules. These
concepts are also extremely important in real-life applications when time-based
operations are needed. In Chap. 7, we will consider analog to digital conversion
(ADC) and digital to analog conversion (DAC). To do so, we will start with the
properties of analog and digital signals. Then, we will focus on the ADC and DAC
modules on the microcontroller. In Chap. 8, we will cover digital communication
concepts in embedded systems. To do so, we will consider the UART, SPI, I2C,
CAN, USB, and other communication modules in the microcontroller. Next, we
will explore memory-based operations in Chap. 9. Through these we will evaluate
memory management in C, C++, and MicroPython languages. Besides, we will
introduce the direct memory access (DMA) and flexible memory controller (FMC)
modules in the microcontroller.

We will introduce the real-time operating system (RTOS) concepts to the reader
via FreeRTOS and Mbed OS in Chap. 10. They will lead to constructing complex
projects in an efficient manner. We will cover LCD usage and graphical user
interface (GUI) formation in Chap. 11. Hence, the reader can form a professional
GUI to interact with the microcontroller. We will introduce how basic digital signal
processing (DSP) applications can be done on the microcontroller in Chap. 12.
Likewise, we will consider the fundamental digital control (DC) and digital image
processing (DIP) concepts from the microcontroller perspective in Chaps. 13 and 14,
respectively. They can lead to more advanced embedded system applications such as
speech processing, computer vision, and machine learning. Finally, we will handle
advanced topics in Chap. 15.

Throughout the book, we target general audience both from engineering and
nonengineering disciplines and explain the topics accordingly. Hence, we tried to
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avoid detailed hardware explanation from the electrical engineering perspective
whenever possible. Therefore, a reader from nonengineering background can
grasp the idea behind the embedded system topic. As for the software side, we
assumed the reader has sufficient knowledge on at least one of C, C++, or Python
languages. To note here, we will improve programming skills of the reader on
these languages throughout the book. Here, our main advantage is implementing
the code on the microcontroller and observing how it behaves step by step by the
available debugging tools. Hence, we will make sure that the reader will gain in-
depth knowledge on the general working principles of embedded systems (more
specifically microcontrollers) both from hardware and software perspectives.

Sample codes in this book are available in the companion web site for the reader.
Related to this, all STM32CubeIDE and Mbed Studio projects for the sample codes
and end of chapter applications are available in the same web site. Course slides and
figures used in the book are also available in the same web site for the reader and
instructor. The solution manual is also available in the companion web site for the
instructor only.
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2Microcontroller Architecture

2.1 The STM32F4Microcontroller

The STM32F429ZIT6 microcontroller to be used throughout the book is based on
the Arm® Cortex™-M4 architecture. For simplicity, we will call the microcontroller
as STM32F4 from this point on. Functional block diagram of this microcontroller
is as in Fig. 2.1. We will benefit from this representation in grouping hardware
and peripheral units of the microcontroller as CPU, memory, general-purpose input
and output ports, clock and timer modules, analog modules, digital communication
modules, and other modules. We will introduce each unit next.

2.1.1 Central Processing Unit

Central processing unit (CPU) is responsible for organizing all operations within the
microcontroller. This is done by the instructions provided to it by the programmer.
To be more specific, the programmer constructs his or her algorithm and forms the
corresponding C, C++, or assembly code. This code is debugged and embedded
into flash memory of the microcontroller by the help of an integrated development
environment (IDE, such as STM32CubeIDE) running on PC. We will explain the
usage of STM32CubeIDE in detail in Chap. 3. The CPU executes the commands by
using its resources (such as peripheral units). We will briefly explain this execution
operation in Sect. 2.2.2. To note here, executing Python codes on the microcontroller
is different. Therefore, we will handle it in detail in Sect. 3.3.
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Fig. 2.1 Functional block diagram of the STM32F4 microcontroller

We provide block diagram of the CPU for the STM32F4 microcontroller in
Fig. 2.2. This diagram gives insight about the inner working principles of the CPU
as will be explained next. Before going further, we should mention that wire
connections and their direction are not random in this figure. They indicate the
direction of dataflow from and to the CPU.

We should take a close look at the blocks in Fig. 2.2. As mentioned before,
the CPU of the STM32F4 microcontroller is based on the Arm® Cortex™-
M4 architecture. Hence, the processor core (as indicated in the figure) has an
accompanying floating-point unit (FPU). This unit is responsible for handling
operations on floating-point numbers in hardware. Hence, they can be executed in a
fast manner.

2.1.1.1 Nested Vectored Interrupt Controller
The nested vectored interrupt controller (NVIC), given in Fig. 2.2, is responsible for
managing interrupt- and exception-based operations within the CPU. We will talk
about what an interrupt is and how it is handled by NVIC in detail in Chap. 5.

2.1.1.2 Debug Access Port and Serial Wire Viewer
The debug access port (DAP) in Fig. 2.2 helps us to reach and monitor the CPU
during operation. Hence, we can observe what is going on inside the CPU while
executing code. In other words, DAP allows us to monitor CPU registers (to be
explained in Sect. 2.1.1.6) without affecting the CPU operation.

The other option to perform the same operation is leading the CPU to the debug
state. Here, the CPU operation is halted. Then, its registers can be monitored. We
will talk about the debugging operation through STM32CubeIDE in Chap. 3. There
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Fig. 2.2 Block diagram of the CPU for the STM32F4 microcontroller [5]

is also the serial wire viewer (SWV) performing a similar operation. Through it,
the user can trace the program counter, variable and peripheral register values,
exceptions, time stamp, and CPU cycles.

2.1.1.3 MemoryManagement Units
Data and codes are stored in memory as will be explained in Sect. 2.1.2. Memory
protection unit, flash patch, and data watchpoints modules within the CPU are used
to manage memory. We will explore usage of these modules in detail in Chap. 9.

2.1.1.4 Embedded Trace Macrocell Module
The embedded trace macrocell (ETM) module allows monitoring the code execution
within the CPU (without stopping it). This is done by the GPIO pins. Therefore,
the user can check when the CPU enters an interrupt, which task uses a common
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variable, and where an error has occurred if there is any. The ETM module needs
external modules to perform all these operations.

2.1.1.5 The BusMatrix
There is a bus matrix which connects modules within the CPU as can be seen in
Fig. 2.2. Let’s first explain what bus means. In simplest terms, bus is composed of
parallel wires in which data (and code blocks) are transferred within the CPU. We
will talk about the bus structure in detail in Chap. 9.

Adjacent to the bus matrix, there are two blocks: the first one being code and
the second one being SRAM and peripheral interface. The code interface block is
responsible for retrieving code blocks to be processed from memory. The SRAM
and peripheral interface block is important for two reasons. First, an external
memory module can be added to the microcontroller through this interface. Second,
all peripheral units (to be explored in the following sections) will be reached as if
they are memory addresses. The SRAM and peripheral interface block module will
be used for this purpose. We will explain this operation in Sect. 2.1.2 in detail.

2.1.1.6 Registers
Registers are data storage elements on the CPU. The STM32F4 microcontroller has
21 core registers in which 13 of them (R0 to R12) can be used for general purpose.
The remaining eight registers are reserved for specific operations by the CPU. All
core registers are as in Fig. 2.3.

Fig. 2.3 The STM32F4 microcontroller core registers [5]
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General-purpose registers (R0–R12) can be used for data processing operations.
These are divided into two groups as low register (R0–R7) and high register (R8–
R12) depending on their usage by 16- or 32-bit instructions [1].

The remaining eight registers are used for specific purposes. Among these, the
program counter (R15, PC) is the register responsible for holding address of the
instruction to be executed. Related to this, there is a link register (R14, LR) which
holds return address during branching and exception operations such as interrupts.
Stack pointer (R13, SP) is responsible for storing the location of local variables and
is used when a function is called in code.

When an instruction is executed within the CPU, the output is summarized as
being negative, zero, or an overflow, carry, or saturation has occurred. These results
are stored as condition flags (each being one bit) within the program status register
(PSR). Therefore, the programmer gets insight about the result of the operation. The
PSR is one of the special registers as in Fig. 2.3.

We should take a closer look at the condition flags as negative (N), zero (Z),
overflow (V), carry (C), and saturation (Q). The negative (N) flag is set to logic
level 1 when the result of an operation is negative. It is set to logic level 0 otherwise.
The zero (Z) flag is set to logic level 1 when the result of an operation is zero. It is set
to logic level 0 otherwise. Overflow is a common problem in microcontrollers since
numbers can be represented with finite number of bits in memory. The overflow
(V) flag is set to logic level 1 when the result of an operation causes an overflow.
It is set to logic level 0 otherwise. A carry bit is generated when the result of the
addition operation is larger than the maximum number which can be represented at
the destination register. Carry bit is also generated when subtracting a larger number
from a smaller one. This is due to executing the subtraction operation as addition via
two’s complement representation in the microcontroller [9]. Finally, shift operations
may generate carry when the shifted bit is logic level 1. The carry (C) flag is set to
logic level 1 when the result of an operation generates a carry. It is set to logic level
0 otherwise. Sometimes numbers are represented between a specific interval. If they
exceed this range, then they are saturated to maximum or minimum value of the
interval. If the result of the saturated arithmetic is different from the unsaturated
one, it means the operation causes a saturation. The saturation (Q) flag is set to
logic level 1 when the result of an operation causes saturation. It is set to logic level
0 otherwise.

There are also four more special registers as can be seen in Fig. 2.3. These are
PRIMASK, FAULTMASK, BASEPRI, and CONTROL. For more information on
these registers, please see [1].

2.1.2 Memory

Data to be processed and code to be executed is stored in memory of the
microcontroller. Although we will consider memory-based operations in Chap. 9 in
detail, we provide introductory concepts here. Hence, the reader can grasp general
characteristics of the memory and its usage.



12 2 Microcontroller Architecture

2.1.2.1 Memory Types
There are two memory types in microcontrollers. There is random access memory
(RAM) to store temporary data. Contents of RAM are lost when the power fed
to it is turned off. There is also read-only memory (ROM) to store code or data
permanently. Even if the power fed to it is turned off, contents of ROM are kept.

Before going further, we should explain roots of memory type naming conven-
tion. The reader may be confused with the name RAM. In fact, it tells us that any
randomly picked region within RAM can be accessed (reached) at the same time
duration. Likewise, ROM may be misleading such that we only read its content. So,
when and how was code or data written to it? Well, sometime in the operation, we
should have written data on ROM. In earlier times, there were dedicated devices
just for this purpose. Nowadays, we have flash memory which works as ROM.
Flash has characteristics such that its contents can easily be modified. At the same
time, the content can be stored in flash for a sufficiently long time. Moreover, the
distinction between RAM and flash is becoming fuzzy as technology is advancing.
Hence, the same memory region can be used for both as RAM and flash as in the
FRAM technology [3].

The STM32F4 microcontroller has two memory types as static RAM (SRAM)
and flash. SRAM is a special memory type which does not need periodic refreshing
as RAM. It also provides faster access to data. The STM32F4 microcontroller has
256 kB SRAM. The first 64 kB of SRAM is called core coupled memory (CCR)
which provides fast code execution. For more information on this issue, please see
[7]. There is also an extra 4 kB backup SRAM within the microcontroller which
keeps data written to it even if the microcontroller goes into standby mode.

The STM32F4 microcontroller has 2 MB flash memory. This memory is divided
into two banks and each being composed of 12 sectors. These sectors are formed
by 16 kB, 64 kB, or 128 kB memory regions. This structure allows the programmer
to erase a specific sector, bank, or the overall flash memory. We will provide more
information on flash in Chap. 9.

2.1.2.2 MemoryMap
Arm® partitioned the memory address range for its microcontroller cores based on
usage. This partitioning is called memory map of the microcontroller and is given
in Fig. 2.4. Since the STM32F4 microcontroller is based on the Arm® Cortex™-M4
architecture, it has the same memory map.

There is an extremely important concept to be mentioned here. The memory map
of the STM32F4 microcontroller does not only represent SRAM and flash memory
addresses. It also represents the interrupt and reset vector table, on-chip peripheral
units, off-chip memory, off-chip peripherals, system components, and on- and off-
chip debug components. Let’s explain these concepts along with the memory map
structure.

As can be seen in Fig. 2.4, the first 512 MB memory space is for code to be
executed on the microcontroller. The next 512 MB memory space is used for on-
chip SRAM. Code to be executed can also be stored here. However, this creates
extra wait states and longer execution times. Therefore, running the code from this
region is not recommended by Arm®. The next 512 MB memory space is used for
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Fig. 2.4 The STM32F4
microcontroller memory
map [5]

all on-chip peripheral unit (GPIO, timers, ADC, and DAC) registers. All peripheral
units are also treated as if they are separate memory locations. Hence, if the CPU
tries to reach a peripheral unit, this is done in the same way as reaching a memory
location. Although the user does not see this operation while writing code in C or
C++ languages, it is important to keep this in mind. The next 2 GB memory space
is used for external memory and peripheral units. The final 512 MB memory space
is used for system peripheral units such as NVIC, memory protection unit (MPU),
and SysTick (specific timer to be explored in Chap. 6). This memory space is also
used for internal-external debug and vendor specific components.

2.1.2.3 Memory RelatedModules
There are also memory related modules within the STM32F4 microcontroller. The
first one is the direct memory access (DMA) module. We can explain the importance
of this module as follows. The CPU is used in most memory reaching operations.
However, it may be busy for some cases. The DMA module allows reaching
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memory without interfering the CPU. Hence, the CPU can work on its own task.
At the same time, reaching memory can be done in parallel by the DMA module.
The STM32F4 microcontroller has DMA controllers. Besides these, STM32F4 has
flexible memory controller (FMC) and chrom-art accelerator controller (DMA2D)
modules. We will explain the usage of these modules in Chap. 9.

2.1.3 General-Purpose Input and Output Ports

The microcontroller needs a medium to transfer data to and from the outside world.
This is done by using ports of the microcontroller. A port is a collection of pins
grouped together. Each pin can be taken as a wire with its electronic control
circuitry. The STM32F4 microcontroller has eight input and output ports called A,
B, C, D, E, F, G, and H. Total number of pins in these ports is 114. Ports A to G
have 16 pins each. Port H has two pins. Each pin can be used for both input and
output operations. Besides, a pin can be used for analog and digital voltage levels.
Hence, the pins of the STM32F4 microcontroller are called general-purpose input
and output (GPIO). We will cover digital input and output operations using GPIO
pins in Chap. 4. Likewise, we will cover analog operations in Chap. 7. Since we
will be using the STM32F4 board throughout the book, we also summarize how the
microcontroller GPIO pins can be reached through the board in Sect. 2.3.2.

2.1.4 Clock and Timer Modules

The CPU and peripheral units within the microcontroller are synchronous devices.
This means that operations within them are synchronized by a common clock signal.
Frequency of the clock signal decides on the speed of operation in actual time. The
clock tick idiom indicates the period of the clock signal. The time needed to perform
an operation in the microcontroller is indicated by clock pulses (or clock ticks).
Therefore, the higher the clock frequency, the faster that operation is performed in
actual time.

Clock signals are generated by oscillator circuitry which can be located inside
or outside the microcontroller. The STM32F4 microcontroller has two internal
oscillators formed by resistive capacitive (RC) circuitry. These are the 16 MHz
high-speed internal (HSI) and 32 kHz low-speed internal (LSI) oscillator. Besides,
the microcontroller has two oscillators formed by external crystal circuitry. These
are the 4–26 MHz high-speed external (HSE) oscillator and 32768 Hz low-speed
external (LSE) oscillator.

The maximum clock frequency that can be reached by the STM32F4 micro-
controller is 180 MHz. Therefore, an operation requiring one clock cycle in the
CPU actually requires 1/180 × 10−6 s in actual time. Due to complexity of the
microcontroller architecture and available peripheral units within the microcon-
troller, the clock source for different peripherals may not be the same. Therefore,
the STM32F4 microcontroller has more than one internal and external clock source.
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A clock controller module is used to manage all clocks and clock sources for this
purpose.

The clock signal is used in timer modules as well. The timer module can be
basically taken as a counter. It is responsible for keeping track of time elapsed
between certain operations. The STM32F4 microcontroller has timer, system timer
(SysTick), watchdog timer, and real-time clock (RTC) modules for time related
operations. Clock and timer modules will be covered in detail in Chap. 6.

2.1.5 AnalogModules

The STM32F4 microcontroller has analog to digital converter (ADC) and digital to
analog converter (DAC) as analog modules. Input and output from these modules are
obtained from GPIO pins of the microcontroller. The ADC module generates digital
representation of an analog voltage level fed to the microcontroller. The STM32F4
microcontroller has three such 12-bit ADC modules. The DAC module converts a
digital representation to analog voltage level and feeds it to output. The STM32F4
microcontroller has a 12-bit DAC module with two output channels. The usage of
ADC and DAC modules will be covered in detail in Chap. 7.

2.1.6 Digital CommunicationModules

Digital communication modules are used to communicate with external devices
using dedicated communication protocols. Although we will cover these
modules in detail in Chap. 8, let’s briefly summarize them. The STM32F4
microcontroller has three inter-integrated circuit (I2C) modules; four universal
synchronous/asynchronous receiver/transmitter (USART) modules; four universal
asynchronous receiver/transmitter (UART) modules; six serial peripheral interface
(SPI) modules; two controller area network (CAN) modules; one universal serial
bus on-the-go full-speed (USB OTG_FS) module; one universal serial bus on-
the-go high-speed (USB OTG_HS) module; and one Ethernet media access control
(MAC) module with DMA controller. These modules will be extensively used when
communicating with external devices or other microcontrollers.

2.1.7 Other Modules

The STM32F4 microcontroller has additional special purpose modules as well.
These are the digital camera interface (DCMI) for receiving data from an external
camera module; serial audio interface (SAI) for controlling audio peripheral units
using different audio protocols; LCD-TFT controller (LTDC) for driving LCD and
TFT panels; flexible memory controller (FMC) for interfacing with static memory,
SDRAM memory, and 16-bit memory cards; secure digital input/output interface
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(SDIO) for controlling multimedia, SD memory, and SDIO cards; and two inter-
integrated sound (I2S) interfaces for audio data.

2.2 Assembly Language

When we write code in C or C++ language, in fact we are not writing in the format
the microcontroller understands. The compiler (to be explored in Chap. 3) converts
our code to machine language and embeds it to code region of the microcontroller
memory. Hence, it can be executed by the CPU. Since the code in machine language
is stored in memory, it is in binary form. Therefore, understanding it is neither trivial
nor feasible for us.

Assembly language offers an option to write the code as close as possible to
machine language but at the same time understandable by a human when inspected.
In other words, we can write the code in assembly language in an editor (to be
explored in Chap. 15) which can be understood when inspected. Besides, assembly
language allows us to reach low-level hardware of the microcontroller. Therefore,
using it provides a good insight in understanding inner working principles of the
microcontroller. Hence, we cover assembly language programming concepts in this
section. As a note, executing Python commands in the microcontroller is different
from the topics introduced in this section. Therefore, we will cover them in Sect. 3.3.

2.2.1 The Arm® Cortex™-M4 Instruction Set

We have instructions defined by the language syntax when we consider C, C++,
or Python languages. These instructions are independent of the hardware platform
the code is executed on. Therefore, the code written for one platform can be ported
to another one with minor modification. Since assembly language directly interacts
with hardware of the microcontroller, this is not the case for it. In other words,
there is no unique assembly language for all microcontrollers (or microprocessors in
general). Instead, the assembly language for one microcontroller architecture (let’s
say Arm® Cortex™-M4) differs from another microcontroller architecture (such
as Texas Instruments MSP430). This difference occurs by instruction set of the
microcontroller.

The instruction set is composed of commands to reach and modify the lowest
level hardware of the microcontroller. Therefore, the instruction set is also called
software architecture of the microcontroller. The STM32F4 microcontroller is
based on the Arm® Cortex™-M processor (more specifically the ARMv7E-M
architecture). The total number of supported instructions in the Arm® Cortex™-M
processor is 207. These can be divided into six subsets as general data moving and
processing, memory access, arithmetic and logic, branch and control, floating-point,
and other instructions. For more information on these instructions, please see [8].
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Fig. 2.5 The fetch, decode, and execute stages

2.2.2 ExecutingMachine Language Code in theMicrocontroller

Although execution steps of a machine language code are an advanced topic beyond
the concepts covered in this book, we feel they should be briefly summarized. This
will give an insight on the operations performed by the CPU. As a reminder, the
code written in C or C++, or assembly language, is converted to machine language
by the compiler. Afterward, it is placed in the code region of the memory. Here,
the memory address for the beginning of the code to be executed is predefined. As
the reset signal is fed to the microcontroller, the program counter (PC) goes to this
address and starts the fetch, decode, and execute stages as in Fig. 2.5. In the fetch
stage, the instruction is fetched from the memory and placed in the pipeline. In the
decode stage, the instruction is decoded to determine what operation to perform. In
the execute stage, the instruction is executed.

The fetch, decode, and execute stages are handled independently. In other words,
while one instruction is being executed, the next one is decoded, and the third
one is fetched from code memory. Each stage requires one clock cycle for most
instructions. However, some instructions, such as data transfer and branch, require
more than one clock cycle for execution. Hence, they stall the pipeline. In order
to decrease the delay caused by this operation, the three-stage pipeline has some
additional properties. For more information on these, please see [1].

2.3 The STM32F4 Board

The STM32F4 microcontroller cannot be used alone unless a dedicated develop-
ment or specific board is constructed for it. The best option for us, as early learners,
is using the available 32F429IDISCOVERY kit for this purpose. For the sake of
simplicity, we will call this board as STM32F4 from this point on. In this section,
we will briefly introduce properties of the board. We will focus on these in detail in
the following chapters whenever needed.
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Fig. 2.6 The STM32F4
board

2.3.1 General Information

The STM32F4 board is as in Fig. 2.6. This board contains the following items:

• STM32F429ZIT6 microcontroller,
• On-board ST-LINK/V2-B embedded debugging tool interface,
• 2.4-inch QVGA TFT LCD,
• User and reset push buttons,
• Two user LEDs, LD3 being green and LD4 being red,
• I3G4250D three-axis MEMS gyroscope,
• 64 Mbit SDRAM,
• Micro-AB connector for USB OTG,
• 8 MHz external crystal.

As can be seen in the above list, the STM32F4 board offers a fairly wide range
of options to use the STM32F4 microcontroller properties. They will help us to
understand the microcontroller concepts better.

2.3.2 Pin Layout

The STM32F4 board has two headers (consisting of pins) such that a wire can
be connected to them. Pins in these headers are directly connected to pins of the
microcontroller. Hence, the user can reach the microcontroller pins through board
headers. The pin layout of the STM32F4 board is as in Fig. 2.7.

As can be seen in Fig. 2.7, pins of the STM32F4 board are arranged in two head-
ers, named P1 and P2. Usage areas of these pins are tabulated in Tables 2.1, 2.2, 2.3,
and 2.4. Some of these pins are already connected to onboard modules and cannot be
used for other purposes. We indicate these pins as “already used” in the mentioned
tables. Unused pins can be used for more than one purpose. We will explore these
usage areas in the following chapters. To note here, we only summarized the usage
areas of the pins to be considered in this book.
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Fig. 2.7 Pin layout of the STM32F4 board [2]. (a) P1 header. (b) P2 header
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Table 2.1 Pin usage table for the left column of P1 header of the STM32F4 board

Pin Port name Usage area

1 5V 5 V input or output

2 PF4 Already used for FMC A4

3 PF2 Already used for FMC A2

4 PF0 Already used for FMC A0

5 PC14 Digital I/O, interrupt, external 32768 Hz crystal

6 PE6 Digital I/O, interrupt, TIM9 Ch2, SPI4 MOSI, DCMI D7

7 PE4 Digital I/O, interrupt, SPI4 NSS, DCMI D4

8 PE2 Digital I/O, interrupt, SPI4 SCK

9 PE0 Already used for FMC NBL0

10 PB8 Already used for LTDC B6

11 BOOT0 Boot option selection

12 PB6 Already used for FMC SDNE1

13 PB4 Digital I/O, interrupt, TIM3 Ch1, SPI1 MISO, SPI3 MISO

14 PG15 Already used for FMC SDNCAS

15 PG13 Already used for LD3 User LED (Green)

16 PG11 Already used for LTDC B3

17 PG9 Digital I/O, interrupt, USART6 RX, DCMI VSYNC

18 PD7 Digital I/O, interrupt

19 PD5 Digital I/O, interrupt, USART2 RX

20 PD3 Already used for LTDC G7

21 PD1 Already used for FMC D3

22 PC12 Digital I/O, interrupt, SPI3 MOSI, UART5 TX

23 PC10 Already used for LTDC R2

24 PA14 Already used for SWCLK

25 PA12 Already used for LTDC R5

26 PA10 Already used for USART1 RX

27 PA8 Already used for I2C3 SCL

28 PC8 Digital I/O, interrupt, TIM3 Ch3, TIM8 Ch3, DCMI D2

29 PC6 Already used for LTDC HSYNC

30 PG7 Already used for LTDC CLK

31 PG5 Already used for FMC BA1

32 GND Ground voltage

The STM32F4 board has one user push button (B1) and two LEDs as green and
red (LD3 and LD4) available to the user. The GPIO pins for the user push button,
LD3 LED (Green), and LD4 LED (Red) are PA0, PG13, and PG14, respectively.
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Table 2.2 Pin usage table for the right column of P1 header of the STM32F4 board

Pin Port name Usage area

1 5V 5 V input or output

2 PF5 Already used for FMC A5

3 PF3 Already used for FMC A3

4 PF1 Already used for FMC A1

5 PC15 Digital I/O, interrupt, external 32768 Hz crystal

6 PC13 Digital I/O, interrupt

7 PE5 Digital I/O, interrupt, TIM9 Ch1, SPI4 MISO, DCMI D6

8 PE3 Digital I/O, interrupt

9 PE1 Already used for FMC NBL1

10 PB9 Already used for LTDC B7

11 VDD VDD output

12 PB7 Digital I/O, interrupt, TIM4 Ch2, USART1 RX, I2C1 SDA, DCMI VSYNC

13 PB5 Already used for FMC SDCKE1

14 PB3 Digital I/O, interrupt, TIM2 Ch2, SPI1 SCK, SPI3 SCK

15 PG14 Already used for LD4 User LED (Red)

16 PG12 Already used for LTDC B4

17 PG10 Already used for LTDC G3

18 PD6 Already used for LTDC B2

19 PD4 Digital I/O, interrupt, USART2 RTS

20 PD2 Digital I/O, interrupt, UART5 TX, DCMI D11

21 PD0 Already used for FMC D2

22 PC11 Digital I/O, interrupt, SPI3 MISO, UART4 RX, USART3 RX, DCMI D4

23 PA15 Already used for Touch Panel TP_INT1

24 PA13 Already used for SWDIO

25 PA11 Already used for LTDC R4

26 PA9 Already used for USART1 TX

27 PC9 Already used for I2C3 SDA

28 PC7 Already used for LTDC G6

29 PG8 Already used for FMC SDCLK

30 PG6 Already used for LTDC R7

31 PG4 Already used for FMC BA0

32 GND Ground voltage

2.3.3 Powering the Board and Programming theMicrocontroller
on It

The microcontroller on the STM32F4 board can be programmed easily by the
onboard ST-LINK/V2-B debugger/programmer. To do so, we should connect the
board to PC via mini USB cable through its USB connector CN1. Then, ST-
LINK can be used for programming or debugging purposes. We will introduce
methods to program the microcontroller this way in Chap. 3. The USB connection
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Table 2.3 Pin usage table for the left column of P2 header of the STM32F4 board

Pin Port name Usage area

1 3V 3 V input or output

2 PF6 Digital I/O, interrupt, ADC3 IN4, TIM10 Ch1, SPI5 NSS, UART7 RX

3 PF8 Already used for L3GD20 MEMS SPI5 MISO

4 PF10 Already used for LTDC DE

5 PH1 Already used for external 8 MHz crystal

6 GND Ground voltage

7 PC1 Already used for L3GD20 MEMS SPI5 NCS

8 PC3 Digital I/O, interrupt, ADC1 IN13, ADC2 IN13, ADC3 IN13, SPI2 MOSI

9 PA1 Already used for L3GD20 MEMS INT1

10 PA3 Already used for LTDC B5

11 PA5 Digital I/O, interrupt, ADC1 IN5, ADC2 IN5, DAC OUT2, TIM2 Ch1,

TIM8 Ch1N, SPI1 SCK

12 PA7 Already used for ACP RST

13 PC5 Already used for OTG FS Over Current

14 PB1 Already used for LTDC R6

15 GND Ground voltage

16 PF12 Already used for FMC A6

17 PF14 Already used for FMC A8

18 PG0 Already used for FMC A10

19 PE7 Already used for FMC D4

20 PE9 Already used for FMC D6

21 PE11 Already used for FMC D8

22 PE13 Already used for FMC D10

23 PE15 Already used for FMC D12

24 PB11 Already used for LTDC G5

25 PB13 Already used for USB OTG HS VBUS

26 PB15 Already used for USB OTG HS DP

27 PD9 Already used for FMC D14

28 PD11 Already used for LCD RGB TE

29 PD13 Already used for LCD RGB WRX DCX

30 PD15 Already used for FMC D1

31 PG3 Digital I/O, interrupt

32 GND Ground voltage

for debugging/programming purposes can also be used to power the board. Hence,
whenever the board is connected to PC, it runs by the provided power.

We can also use an external 5 V power supply to power the board. In this mode,
5V pin of the P1 header or 3V pin of the P2 header can be used to power the board
externally. However, the STM32F4 microcontroller may not be programmed in this
setting. Therefore, we suggest the reader to check [4] for further information on this
topic.
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Table 2.4 Pin usage table for the right column of P2 header of the STM32F4 board

Pin Port name Usage area

1 3V 3 V input or output

2 NC –

3 PF7 Already used for L3GD20 MEMS SPI5 SCK

4 PF9 Already used for L3GD20 MEMS SPI5 MOSI

5 PH0 Already used for external 8 MHz crystal

6 NRST External reset

7 PC0 Already used for FMC SDNWE

8 PC2 Already used for LCD RGB CSX

9 PA0 Already used for B1 user push button

10 PA2 Already used for L3GD20 MEMS INT2

11 PA4 Already used for L3GD20 LTDC VSYNC

12 PA6 Already used for L3GD20 LTDC G2

13 PC4 Already used for OTG FS power switch on

14 PB0 Already used for L3GD20 LTDC R3

15 PB2 Already used for BOOT1 boot option selection

16 PF11 Already used for FMC SDNRAS

17 PF13 Already used for FMC A7

18 PF15 Already used for FMC A9

19 PG1 Already used for FMC A11

20 PE8 Already used for FMC D5

21 PE10 Already used for FMC D7

22 PE12 Already used for FMC D9

23 PE14 Already used for FMC D11

24 PB10 Already used for LTDC G4

25 PB12 Already used for LTDC R5

26 PB14 Already used for USB OTG HS ID

27 PD8 Already used for FMC D13

28 PD10 Already used for FMC D15

29 PD12 Already used for LCD RGB RDX

30 PD14 Already used for FMC D0

31 PG2 Digital I/O, interrupt

32 GND Ground voltage

The STM32F4 microcontroller operates within voltage levels 1.8 V to 3.6 V. We
call the operation voltage value as the supply voltage (VDD) throughout the book.
Let’s explain this voltage range in detail. The actual working voltage level for the
microcontroller is 3.6 V. For some low-level operations, this supply voltage should
be decreased. The microcontroller supply voltage may be decreased till 1.8 V to
operate. However, some peripheral units will not work at this voltage level. For
more information on this topic, please see [6].
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2.4 Summary of the Chapter

We pick the STM32F4 microcontroller as the embedded system to be used in
this book. Therefore, we explored its architecture in this chapter. To do so, we
started with the hardware modules within the microcontroller as CPU, memory,
GPIO ports, clock and timer modules, and digital communication modules. We will
explore each module in detail in the following chapters. Observing all together with
their interactions provides a better insight. Hence, we briefly introduced them here.
The architecture of the microcontroller also consists of its software. Therefore, we
covered the assembly language and how a code in assembly language is executed
in the STM32F4 microcontroller. Although we will not extensively use assembly
language programming throughout the book, we still believe that the reader should
be aware of these topics, even in limited degree. We also introduced the STM32F4
board and its properties since we will use the STM32F4 microcontroller by the
help of the board. Therefore, we started with the headers of the board. Then, we
explained how the board can be powered and the STM32F4 microcontroller on it
can be programmed.

The reader should always remember that each microcontroller family and board
developed by a vendor will have its specific properties. Hence, there is no unique
recipe for all available boards and microcontrollers. However, we tried to explain
the topics in this chapter as generic as possible. Hence, when another board and
microcontroller is picked, the information provided here will still be useful. On the
other hand, the information given in this chapter is crucial for the embedded system
concepts to be covered in the following chapters. Hence, the reader should digest
them before going further.

Problems

2.1. What are the other members of Arm® Cortex™-M architecture besides
Cortex™-M4?

2.2. What are the main building blocks of the STM32F4 microcontroller?

2.3. How can code execution and data be observed in the STM32F4 microcon-
troller?

2.4. What does bus stand for in terms of the microcontroller architecture? How
does the bus size affect microcontroller performance?

2.5. What is the fundamental difference between RAM and flash memory? What is
the size of RAM and flash memory on the STM32F4 microcontroller?

2.6. Why do we need clock signals for microcontrollers?
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2.7. Can an assembly code written for the MSP430 microcontroller be directly
ported to the STM32F4 microcontroller?

2.8. What is the difference between the assembly and machine language?

2.9. Why do we need the STM32F4 board instead of the STM32F4 microcontroller
alone?

2.10. Which methods can be used to power the STM32F4 board?

2.11. List the modules available on the STM32F4 board.
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3Software Development Platforms

3.1 The STM32CubeIDE Platform

C is the most effective language to program a microcontroller in terms of resource
usage, speed of execution, and ease of programming. Therefore, it is taken as the de
facto language for most microcontrollers. Here, we assume the reader has sufficient
knowledge on fundamental C programming techniques. If this is not the case, we
refer the reader to valuable books on this topic.

We will benefit from the STM32CubeIDE platform to program the STM32F4
microcontroller via C language. This platform has several advantages. First, it is
free. Second, it is specifically developed for microcontrollers by STMicroelectron-
ics. Third, it is possible to reach and modify all properties of the microcontroller
including its peripheral units using STM32CubeIDE. Therefore, we picked it in this
book. To note here, it is also possible to use C++ language to develop programs
in STM32CubeIDE. However, we will focus on C language instead throughout the
book.

To get familiar with STM32CubeIDE, we will start with its installation. After-
ward, we will explain how to create and manage a project. Here, we will not
adjust peripheral units of the microcontroller. Instead, we will focus on fundamental
properties of creating and executing a project in STM32CubeIDE. As we master
this step, we will see how the peripheral units can be modified in Sect. 3.1.5. To do
so, we will benefit from STM32CubeMX which will be of great use in managing
microcontroller hardware.

Supplementary Information The online version contains supplementary material available at
(https://doi.org/10.1007/978-3-030-88439-0_3).

© Springer Nature Switzerland AG 2022
C. Ünsalan et al., Embedded System Design with Arm Cortex-M Microcontrollers,
https://doi.org/10.1007/978-3-030-88439-0_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88439-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-88439-0_3
https://doi.org/10.1007/978-3-030-88439-0_3


28 3 Software Development Platforms

3.1.1 Downloading and Installing STM32CubeIDE

It may seem trivial; however, the first step in using the STM32CubeIDE platform
is downloading and installing it. Therefore, we will briefly go over these steps
first. Afterward, we will show the welcome screen of STM32CubeIDE and its
perspectives. Hence, the reader will know what to expect at this step.

STM32CubeIDE can be downloaded from the web site https://www.st.com/en/
development-tools/stm32cubeide.html after registering or logging in. When the
download is complete, the reader should follow the steps given there for installation.
When the installation is complete, the reader should set the workspace directory
from the opening window. Afterward, STM32CubeIDE will launch.

3.1.2 Launching STM32CubeIDE

As the STM32CubeIDE launches, the welcome window will be as in Fig. 3.1. We
will use this window for all our needs. Therefore, let’s briefly summarize its basic
sections.

Fig. 3.1 STM32CubeIDE welcome window

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
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As can be seen in Fig. 3.1, there exists the “Project Explorer” panel on the
left side of the welcome window. The user can create a new project through it.
As a new project is created, this panel summarizes all its properties. Code files
will be opened as they are added to the project at the center of STM32CubeIDE.
Hence, the reader will modify his or her code in this section. There will be other
sections which summarize hardware properties of the microcontroller on the right
side of the panel. The reader can choose available perspectives such as “C/C++,”
(default) “Debug,” and “Device Configuration Tool” in STM32CubeIDE. There are
also grouped buttons on the top of the panel. These will be of use in debugging
and modifying the code. There are tabs which will summarize all build and debug
operations at the bottom of the panel. We will explain all these properties in the
following sections as we focus on parts of a project.

3.1.3 Creating a New Project

A project typically contains source, header, and includes files. STM32CubeIDE
generates an executable file from these to be embedded to the microcontroller. This
section is about creating a C project. We have two options here. The first one does
not deal with peripheral and pin properties of the microcontroller. The second one
deals with these. We will focus on the first option in this section to get familiar with
the basics of STM32CubeIDE. We will focus on the second option in Sect. 3.1.5.

To create a new project, click “File,” “New,” and “STM32 Project.” In the
opening window, select the hardware platform to be used in the project. For our
case, we should choose “STM32F429I-DISC1” from the “board selector” tab and
press “Next.” Afterward, the “Project Setup” window opens as in Fig. 3.2.

We should give a name to our project in this window. For our case, we set it
as “project1.” We should set the location of the project which may be done by the
option “use default location.” We should set the “Targeted Language” as C. We
should set the “Targeted Binary Type” as “Executable.” The final selection is titled
“Targeted Project Type.” Here, we have two options as “STM32Cube” and “Empty.”
The first option allows modifying the peripheral units. We will consider this option
in Sect. 3.1.5. Hence, we select the “Empty” option to generate the project as for
now. As we press the “Finish” button, a new project will be generated which can be
observed under the “Project Explorer” tab as in Fig. 3.3.

As can be seen in Fig. 3.3, STM32CubeIDE added all necessary files to the
project. The only step left is adding our C code to the “main.c” file generated under
the “Src” folder. In this section, we will use the code given in Listing 3.1 as an
example. To do so, open the “main.c” file by double-clicking on it. Add your code
to this file. Then, save it by clicking the “Save” button on the upper left corner of
the menu.
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Fig. 3.2 Project setup window

Fig. 3.3 Project explorer tab

Listing 3.1 The first C code for the STM32F4 microcontroller

int a = 1;
int b = 2;
int c;

int main(void)
{
int d;
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c = a + b;
d = c;

while (1);
}

3.1.4 Building, Debugging, and Executing the Project

As we create our project, the next step is its execution. To do so, we will
first consider the building and debugging steps. Afterward, we will focus on the
execution step.

3.1.4.1 Building and Debugging the Project
The first step in executing the code on an embedded platform is building and
debugging it. There is a button with hammer shape on STM32CubeIDE horizontal
toolbar as “Build”. As the user presses the right bottom arrow there, two options
emerge as “Debug” and “Release”. The first option builds the project with the
necessary debug information. In this default option, no optimization is done on
the built output. The second option is specific to deploying the built output to the
microcontroller. Hence, the main focus here is optimizing output of the project and
minimizing its size. Running steps in both options (such as warnings and errors) can
be observed in the “CDT Build Console” window. If there is an error in a code line,
it is indicated by a red cross.

The second step in executing the code is debugging and loading it to the target
device. There is a button on STM32CubeIDE’s horizontal toolbar as “Debug.” It can
also be reached from the “Run” tab. As we press this button, a new window appears
asking for the “Edit Configuration” as in Fig. 3.4. Within this window, we can make
all adjustments related to the debugging process. The default settings should be kept
as they are in this window unless otherwise stated.

As we press “OK” in the “Edit Configuration” window, the code is debugged and
downloaded to the microcontroller. Afterward, the STM32CubeIDE interface turns
to the “Debug” perspective.

3.1.4.2 Executing the Project
As the debugged C code is downloaded to the microcontroller, the next step is
its execution. At this stage, the code will be executed till the beginning of the
main function. The microcontroller waits for further command. Buttons for program
execution are located on the toolbar as in Fig. 3.5.

The name of each button can be observed by moving the cursor over it. These
buttons and their function are explained briefly in the below list.

• Skip all breakpoints: Disable all previously set breakpoints. We will talk about
what a breakpoint is in the following paragraphs.
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Fig. 3.4 The debug interface menu

Fig. 3.5 The execution session menu

• Terminate and relaunch: If a modification is done in the program while in
debug mode, this button rebuilds and debugs it.

• Resume: Resumes execution of the code from the last executed location.
Execution of the code continues until a breakpoint when this button is clicked.

• Suspend: Halts execution of the code. All windows used to observe software and
hardware are updated with recent data.

• Terminate: Ends execution of the code. The debug session is also ended by this
command.

• Disconnect: Disconnect from the target device.
• Step into: Executes the next line of code. If this line calls a function, the compiler

executes the next line in it. Then, it stops.
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Fig. 3.6 The Expressions
window

• Step over: Executes the next line of code. If this line calls a function, the
compiler executes the function completely. Then, it stops.

• Step return: Completes execution of the function and exits the code.
• Instruction stepping mode: The C code is executed based on its generated

assembly code within the step into, step over, and step return commands.

Observing variables, registers, or memory is important while developing the
project. Code execution should halt in order to perform this operation. A breakpoint
should be added to stop execution of the code at a specific code line. To do so,
left-click on the desired code line and select “Add Breakpoint. . . ” from the pop-
up window. A new window appears asking for the breakpoint type. Here, we can
select the “Regular” type. As the breakpoint is added, a blue circle will appear by
the code line to indicate that there is a breakpoint there. The inserted breakpoint can
be deleted by double-clicking on it.

The “Expressions” window (given in Fig. 3.6) can be used to observe selected
variables. In order to add a variable to this window, select the variable to be observed
and right-click on it. Select the “Add Watch Expression” option in the opening list.
Then, click “OK.” The reader can also double-click on the “Add new expression”
button in the “Expressions” window and enter the name of the variable to the opened
box.

We can define a variable either as local or global in C language. As the name
implies, the global variable is available to all code sections. The local variable is only
available to the function it is defined in. We will explore these variable types in detail
in Chap. 9. Although local and global variables can be observed in the “Expressions”
window, local variables can also be observed in the “Variables” window. Here, all
local variables are automatically added to the mentioned window.

There is also “Live Expressions” window which can be enabled from the
“Window/Show View” list besides other options. In this window, variables are
updated in real time while executing the code. Hence, value of a variable can be
observed without stopping the code.
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3.1.5 Using STM32CubeMX toModify Hardware of the
Microcontroller

STM32CubeMX (available under STM32CubeIDE) can be used to control and
modify hardware of the STM32F4 microcontroller. To note here, hardware prop-
erties can also be set via available libraries such as hardware abstraction layer
(HAL). The advantage of STM32CubeMX is that operations are done visually on it.
Moreover, it produces a template C code containing predefined functions to be used
to control hardware properties. Therefore, we will be using this option throughout
the book.

3.1.5.1 Creating a New Project Using STM32CubeMX
In order to modify hardware of the microcontroller, we can create a new project
as explained in Sect. 3.1.3 with one difference. Since we will modify hardware
of the microcontroller, we will set the “Targeted Project Type” as “STM32Cube”
in Fig. 3.2. Afterward, a new window appears asking for the “Firmware Library
Package Setup.” At this step, leave all default settings as they are and press “Finish.”
The next pop-up window asks whether to initialize all peripheral units with their
default mode. Click “No” since we will modify necessary pin properties as we need
them. A window should open up as in Fig. 3.7.

We can set all system hardware properties through STM32CubeMX. At this
step, let’s assume that we want to turn on the green LED on the STM32F4 board
whenever the user button on it is pressed. Although we will see how this can be done
in detail in Chap. 4, let’s create a simple project for this purpose. To do so, we should
first modify the microcontroller pin properties. Hence, we should set the pin PA0 of
the STM32F4 microcontroller as “GPIO_Input” and pin PG13 as “GPIO_Output.”
Fortunately, these modifications can be done in the STM32CubeMX interface easily.
Within the "Pinout&Configuration” tab, locate the mentioned pins and left-click on
them one by one. A pop-up window appears asking for which purpose the pin will
be used for. Set the pin PA0 as “GPIO_Input” and pin PG13 as “GPIO_Output” and
proceed to clock configuration by opening the “Clock Configuration” tab. We will
benefit from the automatic clock setting property of STM32CubeMX here. To note
here, this is the default setting and we suggest using this option whenever possible.
Clock setup will be covered in detail in Chap. 6.

3.1.5.2 Generating andModifying the Code
Now, we are ready to generate the code corresponding to the hardware setup. Before
doing so, we can open the “Project Manager” tab. Here, we can set the properties
of our project from the “Project,” “Code Generator,” and “Advanced Settings” tabs.
We suggest keeping all settings as they are since these are generated automatically.
The next step is generating the code related to the hardware setup. To do so, press
the “Save” button. A pop-up window appears asking for generating the code. Press
“OK” there.
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Fig. 3.7 Initial screen for STM32CubeMX

As the code is generated, we can open the “main.c” file under the “Src” folder.
As this file is opened, the reader will observe that there are sections labeled “USER
CODE BEGIN” and “USER CODE END” asking for the user to add his or her code
snippets. This setup is done to ensure that other parts of the code related to hardware
setup are not modified by mistake. Finally, we will test the project. To do so, add
the following C code snippet in Listing 3.2 to the appropriate place in the opened
“main.c” source file.

Listing 3.2 The C code snippet to be added

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0))
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
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3.1.5.3 Executing the Project
As we debug the project and embed the generated code on the STM32F4 microcon-
troller, it will be ready to be executed. Here, we will follow the same steps as in
Sect. 3.1.4.2. The reader can check whether the code is running or not by pressing
and releasing the user button on the STM32F4 board. Every time the button is
pressed, the green LED on the board should turn on. This test ends our coverage
of STM32CubeMX.

3.2 Mbed andMbed Studio Platforms

Although STM32CubeIDE allows controlling all microcontroller properties, some
users do not need such a detailed setup in their projects. Therefore, we introduce the
web-based Mbed and its desktop version Mbed Studio in this section. The user can
form his or her project faster via these platforms.

3.2.1 Mbed onWeb

Arm® introduced Mbed as the online platform to develop projects for its microcon-
trollers. In order to use Mbed, the reader should open a free account at the web site
https://os.mbed.com/ide/. Besides, the selected board should be supported by Mbed.
Such boards are called “Mbed Enabled” and they are listed in the web site https://
os.mbed.com/platforms/. Our STM32F4 board is Mbed enabled. Hence, we can use
it with Mbed.

Mbed on web has three main advantages. First, it does not require downloading
and installing any IDE on PC. It is structured such that the user develops his or her
project on a web-based platform. As the project is built, Mbed creates a binary file
(with extension “.bin”) to be embedded on the microcontroller. Second, Mbed is
formed such that a code written for one platform in the Mbed ecosystem can easily
be ported to another platform as long as hardware requirements are satisfied. This is
possible since Mbed simplifies and generalizes low-level hardware setup and usage.
From this perspective, Mbed resembles the popular Arduino platform. Third, Mbed
allows code sharing between community members since it is an online platform.
This is done by posting and importing the generated code through the web-based
interface. In fact, the reader can easily use a project posted by another community
member by importing it to his or her workspace. Then, this project can be developed
further by the reader for his or her own needs.

3.2.2 Managing a Project in Mbed

As we register to the Mbed web site, we will see the online compiler as in Fig. 3.8.
Before creating our first project, we should add the development board to be used in
operation. To do so, please click on the “No device selected” area on the top right

https://os.mbed.com/ide/
https://os.mbed.com/platforms/
https://os.mbed.com/platforms/
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Fig. 3.8 Online Mbed compiler

Fig. 3.9 Setting project properties under Mbed

section of the compiler. As the new window opens up, press the “Add Board” button
on the bottom side of the window. Then, search for the STM32F4 board by typing
“DISCO-F429ZI” in the search area and click on the board. Then, click on the “Add
to your Mbed Compiler” button. Now, we should be seeing the board on the top
right section of the online Mbed compiler.

3.2.2.1 Creating the Project
Let’s consider a simple project and explain how to manage it step by step in Mbed.
We will toggle the green LED on the STM32F4 board every 0.5 s in our project. To
do so, we should benefit from the available template project. On the “New” selection
section of the online compiler, create a new project. The “create new program”
window will be as in Fig. 3.9. As can be seen in this figure, the user should select
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the “Platform” for the project. For us, this should be DISCO-F429ZI. Next, Mbed
asks whether to use any available template for our project. We should select the
“Basic example showing how to drive the LEDs and button” project as the template
for our example. Finally, we should enter the “Program Name” in the window. We
call our project as “project2.”

As the project is created by the mentioned steps, we should be seeing it on the
left side of the online panel under the “Program Workspace” region. We should see
the “main.cpp” file under the project folder. We should replace the content of the
file by the C++ code in Listing 3.3 for our purposes. We will explain the commands
there in Chap. 4. Here, we will just use this code as a template to get familiar with
Mbed.

Listing 3.3 The main file for our project under Mbed

#include "mbed.h"

#define WAIT_TIME 500000
DigitalOut greenLED(LED1);

int main()
{
while (true)
{
greenLED = !greenLED;
wait_us(WAIT_TIME);
}
}

3.2.2.2 Building and Executing the Project
As the project is created and its main file is modified, the next step is its execution.
To do so, we should compile it. Hence, the user should press the “Compile” button
at the top side of the online compiler. As the project is compiled, and assuming
no problem has occurred, Mbed generates the file “project2.DISCO_F429ZI.bin”
which can be found under the “Downloads” folder in the Windows operating system.
In order to run it, the reader should connect the STM32F4 board to PC through
its USB interface. As the board is connected to PC, it should be seen as a new
USB device under the “Devices” folder. The reader should drag and drop the
“project2.DISCO_F429ZI.bin” file to this folder to run it. Afterward, the result can
be observed on the board.

3.2.3 Mbed Studio on Desktop

The procedure is straightforward in creating, building, and executing the project
under Mbed. However, the user should have an active Internet connection to perform
all these operations. This may not be possible for some cases. Besides, it is not
possible to debug the code during its execution. We can benefit from Mbed Studio
to overcome these shortcomings.
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Fig. 3.10 Mbed Studio
launch window

Mbed Studio is the desktop version of Mbed. The reader can download it from the
web site https://os.mbed.com/studio/. When the download is complete, the reader
should follow the steps summarized there for installation. When the installation
is complete, the reader should login to his or her Mbed account. Afterward, the
program will launch and the IDE will be as in Fig. 3.10. As can be seen in this
figure, Mbed Studio has a fairly compact interface. There exists a panel on the left
side of the window. Through it, the user can create a new project, select the target,
and build the project for the selected target. At the center side of the window, the
main code file will be opened as it is added to the project. There are tabs which will
summarize all build and debug operations at the bottom of the panel.

3.2.4 Managing a Project in Mbed Studio

We can create, build, debug, and execute a project under Mbed Studio. Before
creating the project, we should connect our STM32F4 board to PC. Mbed Studio
automatically detects the board and displays it under the “Target” section. Moreover,
the reader can check the connection status of the board in the same section. If the
board connection is active, then a green colored USB sign should be visible in front
of the target board name.

https://os.mbed.com/studio/
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Fig. 3.11 Creating the
project under Mbed Studio

3.2.4.1 Creating the Project
We can create a new project under Mbed Studio with similar steps as in Mbed. To do
so, the reader should click on the “File” menu and select the “New program” there.
A new window opens up as in Fig. 3.11. Next, we should select a template program
as in Mbed. For our case, we can select “mbed-os-example-blinky-baremetal.” We
should give a name to our project in the “Program name” window. Afterward, we
should press the “Add Program” button and let Mbed Studio import all necessary
libraries.

The code to be executed can be found in the “main.cpp” file under our project.
We will use the available code in our first project. We provide the content of the
main file in Listing 3.4 for completeness. This code performs the same operations
as in Listing 3.3.

Listing 3.4 The main file for our project in Mbed Studio

#include "mbed.h"

#define WAIT_TIME_MS 500
DigitalOut greenLED(LED1);

int main()
{
printf("This is the bare metal blinky example running on Mbed OS

%d.%d.%d.\n", MBED_MAJOR_VERSION , MBED_MINOR_VERSION ,
MBED_PATCH_VERSION);

while (true)
{
greenLED = !greenLED;
thread_sleep_for(WAIT_TIME_MS);
}
}
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3.2.4.2 Building, Debugging, and Executing the Project
There are three buttons on Mbed Studio’s left panel with the hammer, triangle, and
bug shape to build, run, and debug the project, respectively. Different from Mbed,
the user does not have to drag and drop a file to execute the generated binary file.
Instead, all these steps are handled by Mbed Studio. Hence, these operations are
simplified further. As the program in Listing 3.4 is built and executed following the
mentioned steps, the green LED on the STM32F4 board should be blinking every
0.5 s.

3.3 MicroPython

Python is a very popular programming language mainly targeting PC and single
board computers like Raspberry Pi. It can also be used on microcontrollers.
MicroPython is the required implementation of Python for this purpose. Therefore,
we will introduce its setup, working principles, and usage in this section.

3.3.1 About Python

Python emerged as a high-level programming language and gained enormous
success in data processing and scientific communities. There are several reasons for
this popularity. First and most important of all, Python is a high-level programming
language. This means that the programmer will not deal with low-level hardware
modifications in it. Therefore, he or she can easily form a prototype code for a given
problem. Second, Python can easily be installed and executed on Windows, Linux,
or embedded Linux. Besides, the code written on Linux can be directly used in
Windows or vice versa. Third, Python has several libraries covering most application
areas. These further simplify life for the programmer. By the way, these libraries
are provided by the Python user community free of charge. Moreover, almost all
deep learning libraries are available in Python language. Hence, the programmer
constructing such an application should use Python for this purpose.

We will use Python for two main reasons in this book. First, Python is the
backbone of MicroPython to be introduced in the following section. Second, we
will benefit from Python on PC during data transfer between the microcontroller
and PC. Therefore, we assume that the reader has necessary background on Python.
If this is not the case, we strongly suggest the reader to consult books on Python.
We leave downloading and installation steps of Python to the reader. These can be
handled by support from the Python web site https://www.python.org/.

https://www.python.org/


42 3 Software Development Platforms

3.3.2 Python for Microcontrollers: MicroPython

MicroPython is the implementation of Python language for microcontrollers. It
allows executing high-level Python code on a selected microcontroller. To note here,
MicroPython can only be used on a subset of microcontroller families supporting it.
The STM32F4 microcontroller and STM32F4 board is supported by MicroPython.
Hence, we benefit from it in this book.

MicroPython offers several advantages when used on microcontrollers. Its first
advantage is allowing a Python programmer to use the microcontroller. Hence, such
a programmer does not need to learn C or C++ language. The second advantage
of MicroPython is its available libraries. Although this library collection is not
as diverse as Python, it is expanding. Moreover, if the reader needs a specific
library to be used under MicroPython, it can be constructed from scratch for the
microcontroller at hand. We will provide a way to form such a library in Chap. 15.
The third advantage of MicroPython is its being an interpreter-based language. This
means that the programmer should compile, debug, and embed the code to the
microcontroller in C or C++ languages. However, the code in MicroPython can
be executed line by line by the read-evaluate-print loop (REPL, to be explained in
detail in Sect. 3.3.5). As a final note, since C and C++ languages allow reaching
low-level hardware properties of the microcontroller, they can be used to get the
highest performance from it. When the performance is not the first priority, then
MicroPython emerges as the high-level and fairly user-friendly option.

3.3.3 Setting upMicroPython on the STM32F4Microcontroller

MicroPython has been compiled for selected microcontrollers and is available as
a firmware file, with extension “.dfu,” on its official web site https://micropython.
org/download. The reader should download the most recent MicroPython version
suitable for the microcontroller and development board at hand. For our case, we
should check the “STM32 boards” section in the mentioned web site and select the
latest version of the board file with the “.dfu” extension under the “Firmware for
STM32F429DISC board” section for our STM32F4 microcontroller.

The dfu file extension stands for device firmware upgrade. Hence, we need to
upgrade the firmware of our STM32F4 microcontroller to use MicroPython on it.
We will benefit from the available sources to perform this operation in this book.
The reader can check the provided references for more information on dfu file
management on STM32 microcontrollers [2, 4].

As we download the appropriate dfu file from the MicroPython web site, the next
task is loading it to the STM32F4 microcontroller as a firmware upgrade. To do so,

https://micropython.org/download
https://micropython.org/download
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we should download the STSW-STM32080 and STSW-LINK004 packs from the
STMicroelectronics web site. The reader can use the “DFU file manager” program,
within the STSW-STM32080 pack, and select “I want to EXTRACT S19, HEX or
BIN from a DFU one.” In the opening window, he or she should pick the downloaded
dfu file for the STM32F4 microcontroller and select “Hex Extraction.” The DFU
file manager will create a “hex” file in the working directory when the reader clicks
“extract.” We can use the “STM32 ST-LINK Utility” program, within the STSW-
LINK004 pack, to load the extracted hex file to the STM32F4 microcontroller. To do
so, the reader should open the STM32 ST-LINK Utility program and select “Target,
Program & Verify.” In the opening window, he or she should browse the created hex
file. Finally, the reader should click “Start” and wait until loading process is finished.
Afterward, MicroPython will be ready to be used on the STM32F4 microcontroller.

The standard firmware mentioned in the previous paragraphs does not include
some peripheral units or their subparts to be used throughout the book. Therefore,
we formed a custom MicroPython firmware (with additions) and provided it in the
companion book web site as a hex file. Therefore, we strongly suggest the reader
to use it to benefit from the software provided in the book. To do so, necessary
steps explained in the previous paragraph starting from loading the hex file to the
STM32F4 microcontroller should be followed.

Since MicroPython has been loaded to the microcontroller as a firmware upgrade,
it can be erased easily. Hence, the user can resume using the microcontroller by
STM32CubeIDE or Mbed interfaces. To do so, the only step needed is programming
the microcontroller via these interfaces. If the reader wants to use MicroPython
again, the setup procedure should be applied again.

3.3.4 MicroPythonWorking Principles

While explaining the assembly language in Sect. 2.2, we mentioned that executing
Python commands does not follow the same steps as in C or C++ language. In this
section, we provide a summary of how a Python code is executed. Although we
summarize the steps for Python on PC, they apply to MicroPython as well.

Let’s start explaining the framework for executing the Python code from the
beginning. Hence, we assume that the reader has formed a text file with extension
“.py” by any editor. When this text file is called within the Python interpreter, it is
converted to bytecode. We can call this step as converting the source file to bytecode.
The bytecode is different from machine language and cannot be executed by the
CPU. Instead, it is executed line by line by the Python virtual machine in terms of
switch statements. For more information on these topics, please see [1].

3.3.5 UsingMicroPython on the STM32F4Microcontroller

We provide three different methods to use MicroPython on the STM32F4 microcon-
troller. The first method is based on read-evaluate-print loop (REPL). The second
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method is based on modifying the “main.py” file available under MicroPython. The
third method is using an available Python IDE. We will explain these methods in
detail next.

3.3.5.1 Read-Evaluate-Print Loop
The first method to use MicroPython on the STM32F4 microcontroller is based
on the read-evaluate-print loop (REPL). REPL allows the programmer to execute
the MicroPython code without any need for compiling or uploading it to the
microcontroller. Hence, the programmer can easily test the code interacting with
hardware. Moreover, we can execute a single line of code with this method such
that we can observe its response on the microcontroller.

We can execute REPL by a terminal program (such as Tera Term) running on
PC. In order to reach the STM32F4 board from PC, the terminal program should
connect to it through the serial COM port associated with it. The port name can be
found in “Device Manager” under the Windows operating system, with the name
“STMicroelectronics STLink Virtual COM Port.” For other operating systems, we
kindly ask the reader to consult related resources. The baud rate within the terminal
program should be set to 115200 bits/s.

As the connection between the terminal program and STM32F4 board is estab-
lished, we should restart MicroPython (loaded onto the STM32F4 microcontroller)
by pressing the reset button on the board. Afterward, we can execute the required
MicroPython code line by writing it on the command prompt of the terminal
program on PC. As an example, we can enter the help() command on the command
prompt to list primary help topics in MicroPython. We can also use the tab button on
the command prompt to list the content of a module in MicroPython. As an example,
when we write pyb. on the command prompt and press the tab button, we can see
all objects related to the pyb module.

3.3.5.2 Accessing andModifying theMain File
When MicroPython is loaded to the flash memory of the STM32F4 microcontroller,
there will be two files as “boot.py” and “main.py.” The “boot.py” file contains initial
setup commands. It is called first by the system. After setup, the “main.py” file is
called. This file contains the user code to be executed. Hence, the second method to
use MicroPython is by accessing and modifying content of the “main.py” file.

We can modify the content of the “main.py” file by using rshell. To do so, the
user should install it by using the command pip3 install rshell. Afterward, it
can be started by typing rshell on the command prompt on PC. Then, the user can
reach the STM32F4 board by entering connect serial COMx to the command
prompt. Here x stands for the COM port number the STM32F4 board is connected
to.

As the connection to the board is established, content of the “main.py”
file on the microcontroller can be modified using the command cp Source
/flash/main.py. Here, the Python code written in the Source file is copied
to the “main.py” file. The reader should also add path of the file in operation. Other
Python files can be copied to the microcontroller flash memory using the command
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cp Source /flash. Again, path of the file must be provided here. The STM32F4
microcontroller must be reset by its reset button on the STM32F4 board after the
files are copied.

The reader can also enter the MicroPython REPL over rshell using the
command repl. We can test whether all the above steps have been implemented
correctly by adding the command print(“Hello world!”) to the “main.py” file.
As the code is executed, we expect to see the string Hello world! in the REPL
window. The reader can exit from REPL using the command Ctrl-x.

The “main.py” file may become corrupt or the MicroPython code can enter an
infinite loop during operation. For such cases, the reader should reset the STM32F4
microcontroller to its default settings. To do so, MicroPython’s “factory reset the
file system property” can be used. Flash memory of the microcontroller is returned
to its initial state this way. To start MicroPython in this mode, press both the user
and reset buttons on the STM32F4 board. Then, release the reset button. Green,
red, and both green and red LEDs should turn on periodically. When both LEDs
are turned on, release the user button. The green and red LEDs should flash quickly
four times. Then, both LEDs should turn on. Wait until all LEDs are turned off and
MicroPython starts in the factory reset mode.

3.3.5.3 Using an Available Python IDE
The third method in using MicroPython on the STM32F4 microcontroller is by
an available Python IDE. Thonny is one such IDE developed by the Institute of
Computer Science of the University of Tartu, Estonia. This IDE simplifies the
operations introduced in the previous sections. Hence, the programmer can focus
on the code. Let’s explain how Thonny can be used for this purpose.

Thonny can be downloaded from its web site https://thonny.org/. As the program
is set up and run, its main window will be as in Fig. 3.12. The upper part of the
window is for writing and executing the Python or MicroPython code. The lower
part of the window is the shell in which the reader can execute a Python code line
by line and observe its output.

As can be seen in the lower part of the window in Fig. 3.12, the default interpreter
under Thonny has been set to Python 3.7.7. Since we want to use Thonny for
MicroPython, we should click “Run” and go to the “Select interpreter. . . ” section.
Then, we should select the “MicroPython (generic)” option as in Fig. 3.13. Then,
we should press “OK.”

As the generic MicroPython interpreter is selected in the previous step, Thonny
automatically detects our STM32F4 board connected to PC. We should emphasize
here that the “.hex” MicroPython file should have been loaded to the board
beforehand as explained in Sect. 3.3.3. As the board is detected, the shell section
of the IDE becomes as in Fig. 3.14. Hence, the reader can execute MicroPython
commands there line by line as in the REPL window.

Thonny can also be used to execute the code, written in the upper part of the
window in Fig. 3.12, on the STM32F4 microcontroller. To do so, we should press the
green “Run current script” button with a white triangle on it. Although Thonny has
a debug option, this is not available for the STM32F4 microcontroller. Hence, we

https://thonny.org/
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Fig. 3.12 Thonny, main window

Fig. 3.13 Thonny,
MicroPython interpreter
selection

cannot benefit from it. However, the script can be easily executed this way. As a side
note, the reader may come up with an error screen rarely while running Thonny. The
code should be rerun in such cases. Besides, we expect to have more IDE platforms
to support the STM32F4 board in the near future. They may also be used along with
Thonny.
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Fig. 3.14 Thonny, MicroPython command execution on the shell

3.4 Application: Tools for Analyzing the Generated Code

There are tools for analyzing the generated C, C++, and MicroPython codes. We
will consider them in this section. Our main focus will be measuring the execution
time and memory usage of the code or code block of interest. Specific for the
STM32CubeIDE, we will also introduce the instrumentation trace macrocell (ITM)
to analyze execution of the C code in more detail.

3.4.1 Analyzing the C Code in STM32CubeIDE

We will start with the ITM usage in this section. Then, we will show how the
execution time can be measured under STM32CubeIDE. Next, we will provide a
way to measure memory usage.

3.4.1.1 The Instrumentation Trace Macrocell Usage
ITM is used for observing variables and key code components during run time.
We can start the ITM by opening the STM32CubeMX window and clicking “SYS”
from the “System Core” menu. Then, we should select “Trace Asynchronous Sw”
from the “Debug” dropdown list under the “SYS Mode and Configuration” window.
Afterward, the pin PB3 of the STM32F4 board will be set as the “Serial Wire Output
(SWO)” pin for the ITM module. Unfortunately, the SWO signal is physically
disconnected from the PB3 pin via SB9 jumper on the STM32F4 board. Therefore,
the jumper must be soldered to use the ITM. Afterward, the reader should add the
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below code blocks to the mentioned locations in the “main.c” file. Then, the printf
function can be used to send data to STM32CubeIDE from the board through ITM.

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

int _write(int file, char *ptr, int len)
{

/* Implement your write code here, this is used by puts and
printf for example */

int i=0;
for(i=0 ; i<len ; i++)

ITM_SendChar((*ptr++));
return len;

}

To observe the obtained data in STM32CubeIDE debug window, click “Run” ->
“Debug Configurations” and select “Debugger” in the opening window. Then, check
the “Enable” box under the “Serial Wire Viewer (SWV)” block and set the “Core
Clock” frequency accurately. Also, make sure that the “Enable live expressions” box
is checked under the “Misc” block. Finally, click “Apply” and “Debug” buttons.

In the debug window, SWV related windows can be found under “Window” ->
“Show View” -> “SWV.” Here, we will only use the “SWV ITM Data Console,”
“SWV Data Trace Timeline Graph,” and “SWV Data Trace” windows. The “SWV
ITM Data Console” window is used to observe the printf function output in
the code. The “SWV Data Trace Timeline Graph” window is used to graphically
observe the selected variables in the code. Therefore, change of a variable over
time can be observed in detail. The “SWV Data Trace” window is used to observe
the history of selected variables in clock cycle resolution. Whenever a variable is
changed in the code, its value and exact time in clock cycles are printed in this
window. For further information on all these windows, please see [3].

In order to use the mentioned SWV windows, click the “Configure trace” button
(represented by a screwdriver and wrench) in any of these windows. In the opening
window, click the “Enable port 0” checkbox under the “ITM Stimulus Ports” block
to observe the printf function output. In order to observe a variable, enable one of
the four “Comparator” blocks and enter the name of the variable to the “Var/Addr”
box. The configurations done under this window are applied to all SWV blocks.
Finally, click “Start trace” button (represented as a red circle) in any of these
windows before resuming the debug process.

3.4.1.2 Measuring the Execution Time
There is no predefined HAL function in STM32CubeIDE to count clock cycles
and measure the execution time of a code block. Therefore, we will use the “data
watchpoint and trace unit (DWT)” for this purpose. This unit has a specific DWT
cycle count counter (DWT_CYCCNT) which holds the total number of clock cycles
after enabling it. Therefore, we should set the “TRCENA” bit of “debug exception
and monitor control register (DEMCR)” first. Then, we should enable the “CYCC-
NTENA” bit of “DWT control register (DWT_CTRL)” to enable “DWT cycle count



3.4 Application: Tools for Analyzing the Generated Code 49

counter (DWT_CYCCNT).” Finally, we should clear “DWT_CYCCNT” by writing
0 to it before measuring the execution time. Afterward, cycle count can be obtained
by reading the DWT_CYCCNT register on demand.

We provide an example on measuring the execution time of a code block below.
The reader should first create a new STM32CubeIDE project and add the below code
scripts to appropriate places in the “main.c” file. As can be seen in this example, the
mentioned registers are not predefined. Hence, we should use their direct memory
locations. We will explore how to do this in Chap. 9.

/* USER CODE BEGIN PD */
volatile uint32_t *DWT_CTRL = (uint32_t *)0xE0001000;
volatile uint32_t *DWT_CYCCNT = (uint32_t *)0xE0001004;
volatile uint32_t *DEMCR = (uint32_t *)0xE000EDFC;
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t coreClock;
uint32_t cycleCount;
float executionTime;

uint32_t i;
uint32_t data[1000];
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void startTiming(void)
{
*DEMCR = *DEMCR | 0x01000000;
*DWT_CTRL = *DWT_CTRL | 1;
*DWT_CYCCNT = 0;
}

uint32_t stopTiming(void)
{
return *DWT_CYCCNT;
}

float calculateTimeMs(uint32_t cycle, uint32_t frequency)
{
return (float)1000 * cycle / frequency;
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
coreClock = SystemCoreClock;
HAL_SuspendTick();

startTiming();
for (i = 0; i < 1000; i++)
{
data[i] = i;
}
cycleCount = stopTiming();
executionTime = calculateTimeMs(cycleCount , coreClock);
/* USER CODE END 2 */
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3.4.1.3 MeasuringMemory Usage
The reader can reach detailed memory usage of a code in STM32CubeIDE using
its Build Analyzer window. Here, there are two sub-windows named “Memory
Regions” and “Memory Details.” In the first window, the reader can observe starting
and ending addresses; free, used, and total memory sizes; and usage percentage of
RAM, FLASH, and CCMRAM. In the second window, the reader can observe the
detailed usage of each memory block separately.

3.4.2 Analyzing the C++ Code inMbed Studio

We can analyze the generated C++ code under Mbed Studio. Therefore, we will
consider measuring the execution time and memory usage for a given code next.

3.4.2.1 Measuring the Execution Time
There is the Timer module to perform time measuring operations under Mbed
Studio. This module has the functions start and stop to start and stop the
timer, respectively. There is also the function elapsed_time to calculate time
difference between starting and stopping points. We provide a usage example for
these functions in Listing 3.5.

3.4.2.2 MeasuringMemory Usage
Mbed also provides a set of functions to monitor the stack and heap usage in run
time. In order to use these functions, we should create an empty “mbed_app.json”
file at the project root folder. Then, we should add the below code block to this file.

{
"target_overrides": {
"*": {
"platform.all-stats-enabled": true
} } }

As we perform all the mentioned operations, we will be ready to measure the
memory usage for a given code. We provide a sample code to show how these
operations can be done in Listing 3.5. Please note that the same code also provides
an example of measuring the execution time for a code block.

Listing 3.5 Measuring the execution time and memory usage in Mbed Studio

#include "mbed.h"

mbed_stats_heap_t heapInfo;
mbed_stats_stack_t stackInfo;
uint32_t i;
uint32_t data[1000];

Timer myTimer;

int main()
{
myTimer.start();
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for (i = 0; i < 1000; i++)
{
data[i] = i;
}
myTimer.stop();
printf("Execution time in microseconds: %llu\n", myTimer.

elapsed_time());

mbed_stats_heap_get(&heapInfo);
printf("Heap size: %ld\n", heapInfo.reserved_size);
printf("Used heap: %ld\n", heapInfo.current_size);

mbed_stats_stack_get(&stackInfo);
printf("Main stack size: %ld\n", stackInfo.reserved_size);
printf("Used main stack: %ld\n", stackInfo.max_size);

while (true);
}

3.4.3 Analyzing theMicroPython Code

MicroPython also has functions to measure the execution time and memory usage
for a given code. Therefore, we consider them next.

3.4.3.1 Measuring the Execution Time
There is the utime module to perform time measuring operations under MicroPy-
thon. This module has functions ticks_ms and ticks_us which can be used to
obtain the current CPU time as milliseconds and microseconds, respectively. There
is also another function ticks_diff to calculate the time difference between two
time measurements. We provide a usage example for these functions in Listing 3.6.

3.4.3.2 MeasuringMemory Usage
The reader can benefit from the function mem_info to observe the detailed memory
usage under MicroPython. This function belongs to the module micropython.
Hence, this module must be imported to use the function mem_info. Afterward,
the current stack and heap usage in RAM can be printed in detail when this function
is called. We provide a sample code to show how these operations can be done in
Listing 3.5. Please note that the same code also provides an example of measuring
the execution time for a code block.

Listing 3.6 Measuring the execution time and memory usage in MicroPython

import utime
import micropython

start = utime.ticks_us()
data = [i for i in range(1000)]
difference = utime.ticks_diff(utime.ticks_us(), start)
print(difference)
micropython.mem_info()
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3.5 Summary of the Chapter

We introduced three software development platforms to manage the STM32F4
microcontroller in this chapter. We will be extensively using them in the following
chapters for performing almost all operations on the microcontroller. To be more
specific, we will be using STM32CubeIDE as the coding environment for C and
assembly language-based programming. We also introduced the STM32CubeMX
along with STM32CubeIDE. Both platforms offer the highest level of control
while programming the microcontroller. Some projects do not need such a detailed
control. Therefore, the reader can benefit from more user-friendly environments as
Mbed on web and Mbed Studio on PC. Hence, we introduced them next as possible
development platforms for C++ based projects. These development platforms
offer a smooth transition from Arduino IDE. We introduced MicroPython as the
implementation of the Python language on microcontrollers. This option opens
up a new way of microcontroller programming. To emphasize again, information
provided in this chapter will be extensively used throughout the book. Therefore,
we strongly suggest the reader to master them.

Problems

3.1. Download and install STM32CubeIDE on your computer.

(a) Create an empty project to execute the C code in Listing 3.1 on your STM32F4
board.

(b) Repeat part (a) for the C code in Listing 3.2.

3.2. Open an account on the Mbed web site. Create a project to execute the C++
code in Listing 3.3 on your STM32F4 board.

3.3. Download and install Mbed Studio on your computer. Form a project to
execute the C++ code in Listing 3.4 on your STM32F4 board.

3.4. Set up MicroPython on your microcontroller. Write a simple code to print
“Hello World!” on the PC terminal. Use the methods introduced in Sect. 3.3.5 to
execute your code.
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4.1 Bit Values as Voltage Levels

We do not need to know the inner working principles of the microcontroller, such
as voltage levels representing bits, when it is not interacting with the outside world.
Instead, we can track all operations within the microcontroller by binary logic levels
0 and 1 (as bits). However, if we start interacting the microcontroller with the outside
world, then abstract representations such as logic level 0 or 1 do not mean much.
Therefore, we should associate these logic levels with actual voltage values used in
the microcontroller. We will deal with this next.

There are several voltage standards to represent logic levels 0 and 1 in digital
systems [1, 7]. The STM32F4 microcontroller is compatible with the JEDEC
standards JESD36 and JESD52. To be more specific, the microcontroller supports
3.3 V standard low voltage complementary metal-oxide semiconductor (LVCMOS)
and transfer logic (LVTTL) levels. We provide these in Fig. 4.1. In this figure, VDD

represents the supply voltage of the microcontroller.
Let’s summarize voltage values in Fig. 4.1. When logic level 1 is fed to output

from a pin, the voltage value there will be between VDD and VOH for both LVTTL
and LVCMOS. Likewise, when logic level 0 is fed to output, the voltage value at the
pin will be between 0 V and VOL. The voltage value to logic level correspondence
also applies to input pin of the microcontroller. When we apply a voltage value
between VDD and VIH to a pin, it will be recognized as logic level 1 in input.
Likewise, applying a voltage value between VIL and 0 V to an input pin will
be recognized as logic level 0. Hence, there are tolerance values for both input
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Fig. 4.1 3.3 V logic levels. (a) LVTTL. (b) LVCMOS

and output voltage values. This should be taken into account during digital I/O
operations. Voltage values outside the tolerances are taken as uncertain within the
microcontroller.

4.2 Interfacing Voltage Levels with theMicrocontroller

While using a GPIO pin of the microcontroller, some applications may require
special consideration. These can originate from input with contact closures (such as
switch or button) or input with voltage values outside the microcontroller’s tolerance
levels. Likewise, when the microcontroller drives output loads with high current
requirements, the user should be cautious. We will explain methods to be used in
such scenarios next.

4.2.1 Digital Input from a Switch or Button

We can get digital input from a switch or button. In this setup, when the button
is pressed (or switch is closed), a voltage value is applied to the microcontroller
pin. The user should pay attention to two issues here. The first one is the
setup (and related hardware) required for interfacing the switch or button to the
microcontroller. The second one is avoiding switch bouncing.
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4.2.1.1 Setting Up the Switch or Button
There are two input setup options when a switch or button is connected to the pin of a
microcontroller. In the first setup, the microcontroller gets VDD V (logic level 1) on
its pin when the button (or switch) is interacted. Likewise, it gets 0 V (logic level 0)
when the button or switch is left to its natural state. This is called active high input.
In the second setup, the microcontroller gets 0 V (logic level 0) on its pin when the
button (or switch) is interacted. It gets VDD V (logic level 1) when the button or
switch is left to its natural state. This is called active low input. Active high or low
inputs are not related to the microcontroller. Depending on the application, the input
can be adjusted as active high or low using a pull-up or pull-down resistor. If input
pin is left floating, then the input state cannot be determined. The pull-up and pull-
down resistors are used to pull the input to VDD or 0 V when the normally closed
switch or button is interacted. The pull-up and pull-down resistors are used to pull
the input to VDD or 0 V when the normally open switch or button is not interacted.
These resistors can be externally connected or internal pull-up/pull-down resistors
of the microcontroller can be used. Sample circuit diagrams for the active high/low
input setup using normally opened and closed push buttons are as in Fig. 4.2.

The preferred setup for button interfacing is active high in the STM32F4 board.
Therefore, when the user button on the board (connected to pin PA0) is pressed, it
will generate logic level 1. When the button is released, it will generate logic level
0. Also, the user button is normally opened.

4.2.1.2 Avoiding Switch Bouncing
Switch bouncing is a serious problem when a button (or switch) is used in a digital
system. Bouncing may occur due to the following reason. If the button (or switch)
is interacted or activated, two metal parts connect and disconnect several times
before an actual stable connection. Hence, the device may generate output more
than once, typically 10 to 100 times over a period of about 1 ms [2]. GPIO pins of
the microcontroller can capture these input values which result in false or multiple
triggering while reading the input in the code.

Either a software- or hardware-based solution can be used to eliminate the switch
bouncing problem. The simplest software solution is adding a delay while reading
the input in the code. Hence, once an input is captured, successive inputs are ignored
during the delay. Although this method is easy to implement, actual inputs will also
be eliminated at the same time. Moreover, this solution may block other operations
and can cause unpredictable problems in the code. Therefore, it should be used with
precaution. We provide a sample code on this issue in the following section.

We can also use a shift register-based software solution to avoid switch bouncing.
In this setup, the microcontroller captures the input values in 1 ms or a smaller time
interval. These values are shifted through a shift register. During switch bouncing,
the shift register content will be formed by logic level 0 and 1 values. However,
the content will be formed by the same value after the bouncing effect. When
such a pattern is observed, the stable input can be captured. This method may also
block other software routines. However, the blocking period is usually much shorter
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Fig. 4.2 Active high and low input circuit diagrams for the push button. (a) Active low input,
normally open push button. (b) Active low input, normally closed push button. (c) Active high
input, normally open push button. (d) Active high input, normally closed push button

compared to the plain delay method. We provide a usage example of this method in
the following sections.

There are also hardware-based solutions to avoid the switch bouncing problem.
To do so, the most feasible circuitry is adding a low-pass RC filter (composed of a
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Fig. 4.3 Hardware solution
for the switch bouncing
problem

resistor and capacitor) followed by Schmitt trigger to the pin. Each digital I/O pin of
the STM32F4 microcontroller has a Schmitt trigger. The internal pull-down resistor
available at the pin hardware can be used in forming the RC filter. Resistance values
for these are typically 40 K�. An external capacitor should be connected to the pin
as well. Hence, the actual setup to eliminate switch bouncing via RC circuitry will
be as in Fig. 4.3 based on the available hardware.

4.2.2 Digital I/O with High Voltage Values

Digital input to the microcontroller can originate from a source, such as sensor
or external device, with high voltage values corresponding to logic level 0 and 1.
Directly connecting such a source to the microcontroller can damage or burn out the
GPIO pin circuitry. It may even damage other parts of the microcontroller. Likewise,
some loads may require high voltage values to operate. Hence, the microcontroller
should feed the necessary voltage levels to them. There are two methods to handle
such situations. The first one is using a level shifter between the high voltage source
or load and microcontroller. This method can be used for both high voltage input
and output operations. The second method is using high voltage tolerant pins of the
microcontroller, if there are any. To note here, even if there are such pins on the
microcontroller, they can only be used for input.

Let’s first consider level shifters with two options as unidirectional and bidirec-
tional setup. Within the unidirectional setup, we can only convert a high voltage to
a low value. In the bidirectional setup, we can convert both high and low voltage
values to each other. The basic unidirectional high to low voltage level shifter is in
fact a voltage divider formed by resistors. This shifter contains two resistors, as R1
and R2, which divide the high voltage by the ratio R1/(R1 + R2). We provide this
setup in Fig. 4.4.
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Fig. 4.4 Basic unidirectional voltage level shifter

Fig. 4.5 Basic bidirectional voltage level shifter

The basic bidirectional voltage level shifter contains a single N-channel MOS-
FET and a pair of pull-up resistors [3]. This setup is as in Fig. 4.5. We can divide the
circuit in this figure into two parts as low and high side. Let’s consider the scenario
in which the low side is set as output and high side as input. Here, when the low
side signal is set to VDD , the MOSFET turns off, and high side signal is pulled up
to VDDH (high voltage level) through the pull-up resistor. When the low side signal
is set to 0 V, the MOSFET source pin is set to ground voltage. Hence, the MOSFET
turns on and the high side is pulled down to 0 V. Let’s next consider the scenario
in which the high side is set as output and low side as input. Here, the MOSFET
substrate diode conducts current and pulls the low side signal down to 0.7 V when
the high side signal is set to 0 V. When the high side signal is set to VDDH , the
substrate diode does not conduct current. Hence, the low side signal is pulled up to
VDD through the pull-up resistor.
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The reader does not have to form the mentioned voltage level shifter circuitry
from scratch. There are ready to use breakout circuits (boards) in the market which
contain multiple voltage level shifters. The reader can benefit from them.

The next option in handling (relatively) high voltage inputs is using tolerant pins.
The STM32F4 microcontroller has 5 V input pins tolerant to voltage levels repre-
senting binary values in TTL form. We refer the reader to check the microcontroller
datasheet to see all available pins [5]. Since we benefit from the STM32F4 board, all
pins except PA4 and PA5 are tolerant to 5 V input. To use them, we should disable
their pull-up/pull-down resistor. The reader can use these pins when a high voltage
input is to be connected to the GPIO pin of the microcontroller.

4.2.3 Digital Output to a Load Requiring High Current and Voltage
Values

Most microcontrollers can feed 3.3–5 V and 25–40 mA through their GPIO pins.
These values are 3.3 V and 25 mA for separate pins of the STM32F4 microcontroller
[5]. Besides, the total output current that can be drawn from all pins of the STM32F4
microcontroller at once cannot exceed 120 mA. We may want to drive heavy loads,
such as a motor or power LEDs, by the microcontroller. Voltage and current output
from the microcontroller may not be sufficient for them. There are three methods
to handle these cases using transistors, optocouplers, and relays. We will consider
them next.

The first method in handling a load requiring high voltage and current is using
a transistor circuit between the load and microcontroller pin. This setup is only
suitable for DC voltages. The reader can use either a BJT or MOSFET for this
purpose [4]. BJTs can handle up to 100 mA current and 20 V voltage. Multiple
transistors connected to each other, such as Darlington bridge configuration, can also
be used for higher current gain. There are boards and ICs available for this purpose.
The standard example is the ULN2003 chip in the market. The MOSFET can
handle very high currents and be easily connected to the microcontroller. However,
the reader should pay attention to the gate-source threshold of MOSFET since it
may exceed the power supply range of the microcontroller. We provide typical
connection options between the BJT, MOSFET, and microcontroller in Fig. 4.6.

As can be seen in Fig. 4.6, BJT or MOSFET turns off when the microcontroller
pin is set to logic level 0 (in other words 0 V). Hence, the current cannot flow
through the load. When the microcontroller pin is set to logic level 1 (in other words
3.3 V), small current flows through the bias resistor and base-emitter junction of the
BJT. Hence, BJT turns on and current flows from the collector (connected to load)
to the emitter pin (connected to ground). MOSFET turns on and current flows from
drain to source (connected to ground). To note here, VDD2 is the separate DC power
supply voltage where load is connected to. The VDD2 voltage level can be same or
higher than VDD .

The second method in handling a load requiring high voltage and current is using
an optocoupler between the load and microcontroller pin. This setup is only suitable
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Fig. 4.6 Driving a heavy load with transistor. (a) BJT. (b) MOSFET

Fig. 4.7 Driving a heavy load with optocoupler

for DC voltages. Optocoupler is an electronic component made up by a simple
phototransistor and LED that separates two circuits from each other using light.
This setup allows handling loads with current and voltage values up to 3 A and
20 V, respectively. Moreover, the optocoupler completely separates two sides of
the circuit (load and microcontroller) including their ground. This means different
supply voltages and grounds can be used in the microcontroller and load connected
to it. A typical connection between an optocoupler and microcontroller is as in
Fig. 4.7.

As can be seen in Fig. 4.7, when the microcontroller pin is set to logic level 0 (in
other words 0 V), the LED turns off. Hence, the phototransistor turns off and current
does not flow from VDD2 to VSS through load. When the microcontroller pin is set to
logic level 1 (in other words 3.3 V), the LED illuminates the phototransistor. Upon
receiving light, the phototransistor turns on and current flows from its collector to
emitter.
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Fig. 4.8 Driving a heavy load with relay

The third method in handling a load requiring high voltage and current is using a
relay between the load and microcontroller pin. Unlike the previous two options, a
relay can control both AC and DC voltages. Relay is an electromechanical or solid-
state element that can open and close. The electromechanical relay is composed
of a contact switch that opens or closes when current flows in its internal coil or
coils. It can handle very high loads having current and voltage values such as 10–
15 A or 110–220 V, respectively. The solid-state relay (SSR) usually consists of an
optocoupler at its input stage and triac or MOSFET at its output stage for AC or DC
output, respectively. SSRs can handle very high loads such as the ones requiring
500 A current.

Some small power, electromechanical or solid state, relays can be directly
connected to the GPIO pin of the microcontroller. However, a transistor or another
supplementary circuit is required to drive the relay itself most of the times. For
such a case, typical connection between the relay and microcontroller will be as in
Fig. 4.8.

As can be seen in Fig. 4.8, when the microcontroller pin is set to logic level 0
(in other words 0 V), BJT turns off and current cannot flow through internal coil of
the relay. Hence, internal contact switch does not close and load current does not
flow. When the microcontroller pin is set to logic level 1 (in other words 3.3 V),
BJT turns on and current flows through internal coil of the relay. This closes the
internal contact switch of relay and high current can flow through the load. The
diode connected against the coil is of type fly back. It protects the circuit from any
back electromotive force (EMF) by the coil of the relay. To note here, VDD2 is the
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separate DC power supply voltage where the internal coil of relay is connected to.
The VDD2 voltage level can be same or higher than VDD . VDD3 is the separate AC
or DC power supply voltage where the load is connected to. The VDD3 voltage level
can be any value that the relay can support. The reader can benefit from available
boards developed for this purpose.

4.3 Digital I/O Setup on the STM32F4Microcontroller

The previous section focused on conditioning digital input or output voltages to be
used by the microcontroller. The next step is setting up the microcontroller GPIO
pins for digital I/O applications. We will consider it in this section by adjusting the
pin properties via C, C++, and MicroPython languages.

4.3.1 Circuit Diagram of a Pin and Its Setup via Associated
Registers

We tabulated GPIO pins of the STM32F4 microcontroller available on the
STM32F4 board in Sect. 2.3.2. Here, we will take a close look at the circuit diagram
of a generic pin of the STM32F4 microcontroller as in Fig. 4.9. As can be seen in
this figure, there are two blocks as input and output driver. There are data registers,
multiplexers, and transistors to control these blocks and read/write data to the pin.
Besides, diodes are placed to protect the pin from external voltage spikes. There are
also controllable pull-up and pull-down resistors in the figure.

Fig. 4.9 Circuit diagram of a pin [6]
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All components in Fig. 4.9 are controlled by their dedicated registers. Let’s
explain how a pin can be set up this way. When the pin is configured as input,
the output buffer (driver transistors) is disabled. When the pin is configured as
output, the output buffer is enabled. Whether the pin is configured as input or output,
the input block is always active. The GPIO mode register, MODER, controls these
blocks. In case the pin is configured as input, pull-up and pull-down resistors can be
enabled or disabled if required. These resistors are configured by the pull-up/pull-
down register, PUPDR. The pin value can be read through input data register, IDR.
In case the pin is configured as output, output type and speed can be adjusted with
output type register, OTYPER, and output speed register, OSPEEDR, respectively.
The pin value can be set to logic level 1 or 0 through the bit set/reset register, BSRR,
and bit reset register, BRR, or directly accessing the output data register, ODR. If the
digital alternate functions (such as I2C and UART) will be used, then the input or
output will be directed to those peripheral units. This is controlled by two alternate
function registers, AFR [2]. Similarly, if the analog input or output will be used,
then the I/O pin is directed to these peripheral units using the analog switch control
register, ASCR. The Schmitt trigger is used to prevent noise and switch bouncing at
the input pin. It is always turned on when the pin is used as GPIO. When an analog
operation is done via the pin, the Schmitt trigger is turned off to save power.

4.3.2 GPIO Registers in MemoryMap of the STM32F4
Microcontroller

The previous section focused on the usage of GPIO registers for controlling
hardware components. In this section, we will deal with the structure of these
registers. In fact, these registers are reached and processed as if they are memory
addresses in Arm® architecture. This structure is called memory mapped IO. The
memory address-based operation is not specific to GPIO registers. Other peripheral
unit registers are also treated in the same way in Arm® architecture. However, we
will only provide the GPIO memory map in this chapter to emphasize working
principles of this setup.

All peripheral unit registers are mapped to memory addresses between
0x40000000 and 0x60000000 in the STM32F4 microcontroller (or in general
the Arm® Cortex™-M4 architecture). Each peripheral unit has its dedicated range
within this address. For example, the GPIO registers are represented between
memory addresses 0x40020000 and 0x40022BFF. Below, we provide how memory
addressing is done for them.

PERIPH_BASE = 0x40000000

AHB1PERIPH_BASE = PERIPH_BASE + 0x00020000

GPIOA_BASE = AHB1PERIPH_BASE + 0x00000000
GPIOB_BASE = AHB1PERIPH_BASE + 0x00000400
GPIOC_BASE = AHB1PERIPH_BASE + 0x00000800
GPIOD_BASE = AHB1PERIPH_BASE + 0x00000C00
GPIOE_BASE = AHB1PERIPH_BASE + 0x00001000
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GPIOF_BASE = AHB1PERIPH_BASE + 0x00001400
GPIOG_BASE = AHB1PERIPH_BASE + 0x00001800
GPIOH_BASE = AHB1PERIPH_BASE + 0x00001C00
GPIOI_BASE = AHB1PERIPH_BASE + 0x00002000
GPIOJ_BASE = AHB1PERIPH_BASE + 0x00002400
GPIOK_BASE = AHB1PERIPH_BASE + 0x00002800

GPIOx_MODER = GPIOx_BASE + 0x00000000
GPIOx_OTYPER = GPIOx_BASE + 0x00000004
GPIOx_OSPEEDR = GPIOx_BASE + 0x00000008
GPIOx_PUPDR = GPIOx_BASE + 0x0000000C
GPIOx_IDR = GPIOx_BASE + 0x00000010
GPIOx_ODR = GPIOx_BASE + 0x00000014
GPIOx_BSRR = GPIOx_BASE + 0x00000018
GPIOx_LCKR = GPIOx_BASE + 0x0000001C
GPIOx_AFRL = GPIOx_BASE + 0x00000020
GPIOx_AFRH = GPIOx_BASE + 0x00000024
GPIOx_BRR = GPIOx_BASE + 0x00000028

As can be seen here, there is a base address for all peripheral units. Moreover,
there is an extra offset value for each GPIO port. Registers for each port are also
specified by additional address offset values on top of the previous base address and
offset values. By summing a specific GPIO base and register offset values, content
of the register can be accessed. For example, to read the content of the IDR register
(GPIOx_IDR), the memory address can be obtained by summing (GPIOx_BASE +
0x00000010).

4.3.3 Setting Up GPIO Registers

We can adjust GPIO port properties through its dedicated registers. The direct way to
perform this is using assembly language and reaching the required memory address.
Although this is a valid option, it is not user-friendly. Instead, we can benefit from
the available functions in C, C++, and MicroPython languages for this purpose.
Hence, the user will not deal with low-level operations.

4.3.3.1 C Language
STM32CubeIDE allows a simpler method to set up port registers when the C
language is used in programming. To be more specific, HAL library functions
are used for this purpose. HAL is the hardware abstraction layer which allows
programmers to form device-independent code while accessing the hardware.
Hence, the same code may be used in other devices with minor modifications.

A GPIO pin within a port can be configured in several modes as input, output,
analog, external interrupt, or alternate function. In this chapter, we will only explain
configuring the GPIO pin as input or output using STM32CubeMX. When the GPIO
pin is configured as input, it can be left floating or its weak internal pull-up or pull-
down resistor can be enabled by software. When the GPIO pin is configured as
output, it can be configured as open-drain or push-pull mode. Its drive speed can
also be selected depending on the application.
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Fig. 4.10 GPIO configuration via STM32CubeMX

A sample procedure while configuring and using a GPIO pin is as follows.
We will assume that the project has already been created in STM32CubeIDE
as explained in Sect. 3.1.5. To modify the pin usage, first open the “Device
Configuration Tool” window by clicking “.ioc” file in the project explorer window.
Then, click the GPIO pin on the STM32F4 microcontroller and select the GPIO
type as in Fig. 4.10 on the “Device Configuration Tool” window. If the GPIO is
selected as input, then its pull-up/pull-down resistor can be activated using “GPIO
Pull-up/Pull-down” option under the “System Core—GPIO” section. If the mode is
selected as output, then speed can be configured through “Maximum output speed”
and mode can be configured through “GPIO mode” under the “System Core—
GPIO” section. The main file will be generated when the “.ioc” file is saved with
changes. Hence, STM32CubeIDE will form necessary functions to set up GPIO
registers via HAL library functions.

4.3.3.2 C++ Language
We can benefit from Mbed and available functions there to adjust GPIO pin
properties. To do so, we should first explain how a pin is represented in Mbed. A
pin is defined by its port name and number. For example, the zeroth pin in port A is
defined by the constant PA_0. Mbed also represents the onboard LEDs and buttons
by generic names. For the STM32F4 board, the green LED, red LED, and user
buttons are called LED1, LED2, and BUTTON, respectively. These definitions make
the generated code more readable and general. Hence, when another Mbed enabled
board is used, the same definitions will hold. We next tabulate the pin names and
constants corresponding to them for the STM32F4 board for Mbed in Table 4.1

GPIO pin setup is done by class definitions under Mbed. Let’s start with the
output port. There are two classes as DigitalOut and PortOut for this purpose.
The user can manage a single pin via DigitalOut. The usage of this class is as
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Table 4.1 Pin names under
Mbed for the STM32F4 board

Mbed

Pin Device Pin name Generic name

PG13 LD3 LED (green) PG_13 LED1

PG14 LD4 LED (red) PG_14 LED2

PA0 User button PA_0 BUTTON

follows. We should give a name to the pin we would like to use. Assume that we
want to call the green LED on the STM32F4 board by the name greenLED. We can
define this LED under Mbed as DigitalOut greenLED(PG_13). From this point
on, the class member greenLED can be used to reach and modify pin PG13 which
is defined as output. We can manage more than one pin at a time via PortOut.
To do so, the class usage is slightly different such that a mask should be formed
beforehand to indicate that pin. As an example, if we want to define the green LED
on the STM32F4 board, first of all we should form a mask such that its 13th bit
(starting from the least significant bit) should be set to logic level 1. All other entries
should be set to logic level 0. Hence, we should have #define GRN_LED_MASK
0x2000 or #define GRN_LED_MASK 0b10000000000000. In the first and second
definitions, the hexadecimal and binary representations are used, respectively. Then,
we can define our green LED as PortOut greenLED(PortG, GRN_LED_MASK).

We can modify and read a pin by the classes DigitalIn and PortIn. The
DigitalIn class allows reading the pin entry and modifying its connected resistor
by PullUp, PullDown, PullNone, or OpenDrain properties. Let’s consider the
user button on the STM32F4 board. We can modify and read contents of this button
as follows. Assume that we would like to call the button as button. We can do so
by DigitalIn button(PA_0, PullDown). Here, we define the pin PA0 as input
and set the resistor connected to it in pull-down mode. Afterward, we can use the
class definition button to reach and read the button value.

We can perform the same operation by the class PortIn as well. To do so,
we should define a mask as in PortOut usage. For our case, this mask will be
as #define BUTTON_MASK 0x0001 or #define BUTTON_MASK 0b00000001 for
the hexadecimal and binary representations, respectively. Then, we can define the
button class as PortIn button(PortA, BUTTON_MASK). We will consider the
usage of the button class in Sect. 4.4.2.

4.3.3.3 MicroPython
We can also set up and reach GPIO pins of the STM32F4 microcontroller
via MicroPython. To do so, we should first initialize the related pin using
the function pyb.Pin(pinName, mode=pinMode, pull=pinPushPull,
af=pinAlternateFunction). Here, pinName stands for the pin name. There
are different formats for entering this input. However, we will use the format ’Pxy’
in this book. Here, x and y represent the port name and pin number, respectively. As
an example, we should enter ’PG13’ to represent the 13th pin of port G. pinMode
is used for selecting one of the predefined six modes as Pin.IN, Pin.OUT_PP,
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PIN.OUT_OD, Pin.AF_PP, Pin.AF_OD, and Pin.ANALOG. Here, Pin.AF_PP
and Pin.AF_OD are used for alternate functions and Pin.ANALOG is used for analog
purposes. Hence, we do not consider them in this chapter. Pin.IN mode is used
for setting the desired pin as digital input. Pin.OUT_PP mode is used for setting
the desired pin as digital output with push-pull resistor control. Pin.OUT_OD mode
is used for setting the desired pin as digital output with open-drain control. If
a pull-up resistor is used in this mode, output is connected to ground with one
transistor and to VDD with the pull-up resistor. pinPushPull is used for enabling
or disabling pull-up/pull-down resistors. Pin.PULL_NONE disables both pull-up and
pull-down resistors for the desired pin. It is also the default selection. Pin.PULL_UP
enables the pull-up resistor and Pin.PULL_DOWN enables the pull-down resistor.
pinAlternateFunction is used for selecting the alternate function for the desired
pin. We will explain this in the following chapters when other peripheral units are
introduced.

4.4 Digital I/O Usage on the STM32F4Microcontroller

We can use a GPIO pin after setting up its properties. We provide ways to do this
via C, C++, and MicroPython languages. We also provide usage examples in each
language.

4.4.1 C Language Usage

We can use GPIO pins through HAL library functions in C language. After
configuring the pin, the level of the pin can be read using the function
HAL_GPIO_ReadPin() in the code if it is configured as input. If the GPIO
pin is configured as output, then it can be set to logic level 1 or 0 by
the function HAL_GPIO_WritePin() in the code. Alternatively, the function
HAL_GPIO_TogglePin() can be used to toggle the output level. We provide
detailed explanation of the mentioned functions next.

GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx,uint16_t
GPIO_Pin)

/*
GPIOx: The port name where x can be (A...H) to select the

specific port for the device.
GPIO_Pin: The pin to be read. This parameter can be one of

GPIO_PIN_0 ... GPIO_PIN_15
*/

void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin ,
GPIO_PinState PinState)

/*
GPIO_Pin: The pin to be written to. This parameter can be one of

GPIO_PIN_0 ... GPIO_PIN_15
PinState: Specifies the value to be written to the selected bit.

This parameter can be one of the GPIO_PinState value
GPIO_BIT_RESET: To clear the port pin
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GPIO_BIT_SET: To set the port pin
*/

void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
/*
GPIO_Pin: The pin to be toggled. This parameter can be one of

GPIO_PIN_0 ... GPIO_PIN_15
*/

Next, we will provide example codes to show how these functions can be used
to control GPIO pins. Our first code, given in Listing 4.1, uses the HAL library
functions to toggle the green LED (connected to pin PG13) on the STM32F4 board
in an infinite loop using delays. In order to observe how this code runs, create an
empty project under STM32CubeIDE and configure pin PG13 as output. Then, use
the code given in Listing 4.1 to toggle the green LED on the STM32F4 board. The
code also consists of an alternative way of performing the same operation. This
section is labeled as “Alternatively” within the code.

Listing 4.1 Toggle the onboard green LED by delay functions, the C code

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_Delay(1000);

HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_Delay(1000);

// Alternatively
/*
HAL_GPIO_TogglePin(GPIOG,GPIO_PIN_13);
HAL_Delay(1000);
*/

/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

The second code, given in Listing 4.2, toggles the red and green LEDs on the
STM32F4 board via user button presses. Here, pins PG13 and PG14 (connected to
the green and red LEDs) are set as output. The pin PA0 (connected to the user button)
is set as input. In order to observe how this code runs, create an empty project and
configure the input and output pins via STM32CubeMX interface. Then, use the
code given in Listing 4.2 to toggle the green and red LEDs via the user button.
Within the code, there is an additional delay function to prevent switch bouncing
due to button presses.
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Listing 4.2 Toggle the onboard red and green LEDs by the user button presses, the C code

/* USER CODE BEGIN PV */
uint32_t counter = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);

/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET)
{
HAL_Delay(100); // Avoid Switch Bouncing
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
}
else
{
HAL_Delay(100); // Avoid Switch Bouncing
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

The third code, given in Listing 4.3, has two counters. The first counter can be
used to turn on and off the green and red LEDs on the STM32F4 board via increasing
its value at each button press. When mod four of the first counter has value zero, both
LEDs turn off. When mod four of the first counter value has value one, only the red
LED turns on. When mod four of the first counter value has value two, only the
green LED turns on. When mod four of the first counter value has value three, both
LEDs turn on. The second counter increases in a continuous manner in an infinite
loop.

Listing 4.3 Turn on the green and red LEDs by specific button press count values, the C code

/* USER CODE BEGIN PV */
uint32_t counter1 = 0, counter2 = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET)
{
while (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET);
counter1++;

if (counter1 % 4 == 0)
{
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HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}
else if (counter1 % 4 == 1)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
}
else if (counter1 % 4 == 2)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}
else if (counter1 % 4 == 3)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
}
}
counter2++;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In Listing 4.3, there is no function added to the code to avoid switch bouncing.
Instead, a hardware circuit is formed by the internal pull-down resistor and 100 ηF
external capacitor (available on the STM32F4 board). Still some glitches may be
observed when the button is pressed. There is a while loop placed in the code to
prevent the multiple toggling operations at each button press. However, these loops
block other routines, such as counter increment. The reader can observe this by
placing a breakpoint to the counter increment line and pressing the button.

The fourth code, given in Listing 4.4, is the modified form of the code given in
Listing 4.3. It uses an additional shift register to eliminate switch bouncing.

Listing 4.4 Turn on the green and red LEDs by specific button press count values with switch
bouncing handled, the C code

/* USER CODE BEGIN PD */
#define DEBOUNCE_PATTERN 0x7FFF
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t shiftRegButton;
uint32_t counter1 = 0, counter2 = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
shiftRegButton = (shiftRegButton << 1) + HAL_GPIO_ReadPin(GPIOA,

GPIO_PIN_0);
HAL_Delay(1);

if (shiftRegButton == DEBOUNCE_PATTERN)
{
counter1++;
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if (counter1 % 4 == 0)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}
else if (counter1 % 4 == 1)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
}
else if (counter1 % 4 == 2)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}
else if (counter1 % 4 == 3)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
}
}

counter2++;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In Listing 4.4, there is a 16-bit shift register for each pin input and the read value
is shifted through it. When the 0x7FFF pattern is observed for the user button, then
LEDs turn on and off accordingly. The reader can observe that this code does not
block the counter increment by placing a breakpoint to the counter increment line
and pressing the button.

4.4.2 C++ Language Usage

Class definitions in Sect. 4.3.3.2 allow us to use them in digital output and input.
Let’s start with digital output first. We can change the voltage level at a certain pin
by the function write() under class DigitalOut. Hence, if we want to feed logic
level 1 to the green LED, after defining it as in Sect. 4.3.3.2, then we can use the
command greenLED.write(1). The same function also allows directly reaching
the pin by the command greenLED=1. The reader can pick one of these options as
desired. If we want to use the PortOut class, then we should use the mask definition
as greenLED = GRN_LED_MASK.

We can read a pin value by the function read() under the class DigitalIn. This
function allows reading the pin content directly. Assume that the user button has
been defined beforehand as in Sect. 4.3.3.2. Then, we can read its value by the code
button.read(). We can also directly use the definition. Assume that we would
like to check whether the pin value is equal to logic level 1. We can do so in two
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different ways as if (button.read()==1) or if (button==1). We can also use
the PortIn class for this purpose.

We next provide examples on the usage of digital I/O under Mbed. The first
example, blinking the green LED on the STM32F4 board, is the C++ version of the
code given in Listing 4.1. In fact, this is the default code for generating a project
under Mbed as given in Sect. 3.2. We modify it to show available setups for this
operation as in Listing 4.5. The reader should enable and disable related parts of the
code to see how the same operation can be done in different ways. To execute the
code in Listing 4.5 in Mbed Studio, we should copy and paste it to the “main.cpp”
file in our active project.

Listing 4.5 Toggle the onboard green LED by delay functions, the C++ code

#include "mbed.h"

//DigitalOut greenLED(LED1);
//DigitalOut greenLED(PG_13);

#define GRN_LED_MASK 0x2000
//#define GRN_LED_MASK 0b10000000000000
PortOut greenLED(PortG, GRN_LED_MASK);

int main()
{
while (true)
{
greenLED = 0;
//greenLED.write(0);
//greenLED = 0;

thread_sleep_for(1000);

//greenLED = 1;
//greenLED.write(1);
greenLED = GRN_LED_MASK;

thread_sleep_for(1000);

//Alternatively
/*
greenLED = !greenLED;
thread_sleep_for(1000);
*/
}
}

Our second Mbed example on the usage of GPIO functions is the modified form
of the code in Listing 4.2. As a reminder, this code toggles the green and red LEDs
based on the user button presses. We provide the C++ code for this operation in
Listing 4.6.

Listing 4.6 Toggle the onboard red and green LEDs by the user button presses, the C++ code

#include "mbed.h"

DigitalOut greenLED(LED1);
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DigitalOut redLED(LED2);
//DigitalIn button(BUTTON1);

#define BUTTON_MASK 0x0001
//#define BUTTON_MASK 0b00000001
PortIn button(PortA, BUTTON_MASK);

int main()
{
greenLED = 1;
redLED = 0;
while (true)
{
if (button == 1)
{
thread_sleep_for(100);
greenLED = 0;
redLED = 1;
}
else
{
thread_sleep_for(100);
greenLED = 1;
redLED = 0;
}
}
}

Our third Mbed example on the usage of GPIO functions is the modified form
of the code in Listing 4.3. As a reminder, this code turns on and off the green and
red LEDs based on the user button count values. We provide the C++ code for this
operation in Listing 4.7.

Listing 4.7 Turn on the green and red LEDs by specific button press count values, the C++ code

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
DigitalIn button(BUTTON1);

int counter1 = 0, counter2 = 0;

int main()
{
greenLED = 0;
redLED = 0;

while (true)
{
if (button)
{
while (button);
counter1++;

if (counter1 % 4 == 0)
{
greenLED = 0;
redLED = 0;
}
else if (counter1 % 4 == 1)
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{
greenLED = 0;
redLED = 1;
}
else if (counter1 % 4 == 2)
{
greenLED = 1;
redLED = 0;
}
else if (counter1 % 4 == 3)
{
greenLED = 1;
redLED = 1;
}
}

counter2++;
}
}

Our fourth Mbed example on the usage of GPIO functions is the modified form
of the code in Listing 4.7. As in Listing 4.4, we use an additional shift register to
eliminate switch bouncing in this code. We provide the C++ code for this operation
in Listing 4.8.

Listing 4.8 Turn on the green and red LEDs by specific button press count values with switch
bouncing handled, the C++ code

#include "mbed.h"
#define DEBOUNCE_PATTERN 0x7FFF

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
DigitalIn button(BUTTON1);

int counter1 = 0, counter2 = 0;
uint32_t shiftRegButton;

int main()
{
greenLED = 0;
redLED = 0;

while (true)
{
shiftRegButton = (shiftRegButton << 1) + button;
thread_sleep_for(1);

if (shiftRegButton == DEBOUNCE_PATTERN)
{
counter1++;

if (counter1 % 4 == 0)
{
greenLED = 0;
redLED = 0;
}
else if (counter1 % 4 == 1)
{
greenLED = 0;
redLED = 1;
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}
else if (counter1 % 4 == 2)
{
greenLED = 1;
redLED = 0;
}
else if (counter1 % 4 == 3)
{
greenLED = 1;
redLED = 1;
}
}

counter2++;
}
}

4.4.3 MicroPython Usage

We can also benefit from MicroPython to use GPIO pins. To do so, we should
apply the following procedure. After the desired pin is initialized as introduced in
Sect. 4.3.3.3, it can be controlled using the function Pin.value(value). If the pin
is configured as input, then we should use this function as value = Pin.value()
to get the pin value. If the pin is configured as output, it is used as Pin.value(1)
or Pin.value(0) for setting or resetting the output, respectively. Here, functions
Pin.high() and Pin.on() can also be used instead of Pin.value(1). Likewise,
functions Pin.low() and Pin.off() can be used instead of Pin.value(0).

Now, we will redo the examples given in the previous sections using MicroPy-
thon. First, we toggle the green LED (connected to pin PG13) on the STM32F4
board in an infinite loop using delays as in Listings 4.1 and 4.5. The MicroPython
code for this example is given in Listing 4.9.

Listing 4.9 Toggle the onboard green LED by delay functions, the MicroPython code

import pyb

def main():
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
while True:

greenLED.value(1)
pyb.delay(1000)
greenLED.value(0)
pyb.delay(1000)

main()

Second, we repeat the examples in Listings 4.2 and 4.6. As a reminder, we toggle
the red and green LEDs on the STM32F4 board via user button presses here. The
MicroPython code for this example is given in Listing 4.10.
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Listing 4.10 Toggle the onboard red and green LEDs by the user button presses, the MicroPython
code

import pyb

def main():
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)
while True:

if userButton.value() == 1:
pyb.delay(100)
greenLED.value(0)
redLED.value(1)

elif userButton.value() == 0:
pyb.delay(100)
greenLED.value(1)
redLED.value(0)

main()

Third, we repeat the examples in Listings 4.3 and 4.7. The MicroPython code for
this example is given in Listing 4.11.

Listing 4.11 Turn on the green and red LEDs by specific button press count values, the
MicroPython code

import pyb

def main():
counter1 = 0
counter2 = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)
while True:

if userButton.value() == 1:
while userButton.value() == 1:

pass
counter1 = counter1 + 1
if counter1 % 4 == 0:

greenLED.value(0)
redLED.value(0)

elif counter1 % 4 == 1:
greenLED.value(0)
redLED.value(1)

elif counter1 % 4 == 2:
greenLED.value(1)
redLED.value(0)

elif counter1 % 4 == 3:
greenLED.value(1)
redLED.value(1)

counter2 = counter2 + 1

main()

Fourth, we repeat the examples in Listings 4.4 and 4.8. As a reminder, these are
the modified codes such that a shift register is added to eliminate switch bouncing.
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Therefore, we also modify the MicroPython code in Listing 4.11 in the same way
and provide the modified code in Listing 4.12.

Listing 4.12 Turn on the green and red LEDs by specific button press count values with switch
bouncing handled, the MicroPython code

import pyb

def main():
DEBOUNCE_PATTERN = const(0x7FFF)
shiftRegButton = 0
counter1 = 0
counter2 = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)
while True:

shiftRegButton = ((shiftRegButton << 1) + userButton.
value()) & 0xFFFF

pyb.delay(1)
if shiftRegButton == DEBOUNCE_PATTERN:

counter1 = counter1 + 1
if counter1 % 4 == 0:

greenLED.value(0)
redLED.value(0)

elif counter1 % 4 == 1:
greenLED.value(0)
redLED.value(1)

elif counter1 % 4 == 2:
greenLED.value(1)
redLED.value(0)

elif counter1 % 4 == 3:
greenLED.value(1)
redLED.value(1)

counter2 = counter2 + 1

main()

4.5 Application: Digital Input and Output Operations in the
Robot Vacuum Cleaner

In this chapter, we implement the three features of our robot vacuum cleaner using
digital IO functions. Therefore, we start with controlling the LEDs and buttons on
the robot. We next measure the dust chamber on the robot. If it is full, then we
inform the reader with the LED. Finally, we detect obstacles on the right and left
side of the robot with digital distance sensors. We provided the equipment list,
circuit diagram, detailed explanation of design specifications, and peripheral unit
settings in a separate document in the folder "Chapter4\EoC_applications"
of the accompanying supplementary material. In the same folder, we also provided
the complete C, C++, and MicroPython codes for the application.
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4.6 Summary of the Chapter

Through digital input and output, the STM32F4 microcontroller can feed voltage
levels (corresponding to bit values) to a connected device or electronic component
(such as LED). Likewise, the microcontroller can receive bit values (converted
from voltage levels) from the connected device or electronic component (such as
button and voltage source). These let the microcontroller interact with the outside
world. Therefore, we introduced digital input and output, with all its components,
in this chapter. Hence, we started with the standards on representing a bit value
as voltage level. The aim here was to emphasize that the bit value is converted
to voltage level when fed to output from the microcontroller. Likewise, received
voltage level is converted to the corresponding bit value when read from input of
the microcontroller. We next considered different structures such as interfacing the
microcontroller with inputs having a high voltage value or output to loads requiring
high current or voltage. Through these, the microcontroller can interact with a wide
variety of external devices and electronic components. Finally, we focused on how
digital input and output can be set up and used in the STM32F4 microcontroller. We
also applied these methods on a real-world system as the end of chapter application.
This will be the backbone of applications to be considered in the following chapters.

Problems

4.1. Summarize voltage standards to represent logic level 0 and 1 in a digital
system.

4.2. What should we understand from the undefined region in Fig. 4.1?

4.3. What does active high and low setup mean in button interfacing? Which setup
has been used in the STM32F4 board?

4.4. Form a circuit for bidirectional communication between the STM32F4 micro-
controller and a sensor. The sensor has 5 V input-output voltage level. The sensor
cannot use the same pin for both input and output. Therefore, two different pins on
the STM32F4 board should be used.

4.5. The STM32F4 microcontroller will be used for a smart home system. It is
necessary to control two bulbs connected to the lighting system. Each bulb needs
220 V AC voltage to operate. Hence, design a circuit between the bulbs and
STM32F4 board.

4.6. Design a hardware circuit to eliminate switch bouncing in a push button. Setup
for the button is active low input, normally open.
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4.7. Can we detect switch bouncing by code only?

4.8. Parity check is an important method used in digital communication and data
storage. We will simulate this method by forming a character array with nine entries.
Each array entry can be 0 or 1. In actual implementation, eight bits represent the
transmitted data. The ninth bit is added to satisfy the parity condition (whether being
even or odd parity). Form a project such that when the (selected) parity condition is
satisfied in the character array, the green LED on the STM32F4 board is turned on.
Otherwise, the red LED on the board is turned on. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

4.9. We have an array composed of 16 entries each being either 0 or 1. Form a
project to check the array entries periodically, with 1 s period. To do so, we can
benefit from an appropriate delay function in C, C++, or MicroPython languages. If
the checked array value is 0, then the red LED on the STM32F4 board should turn
on. Otherwise, the green LED on the board should turn on. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

4.10. Form a project such that red and green LEDs on the STM32F4 board start
toggling at 1 s interval. To do so, we can benefit from an appropriate delay function
in C, C++, or MicroPython languages. There should be a 0.5 s offset between the red
and green LEDs. The toggling should continue ten times. Then, the toggle period
should increase to 2 s. After ten more toggles, the period should decrease to 1 s
again. This operation should continue periodically with this setup indefinitely. Form
the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

4.11. Restructure the project in Problem 4.10 such that period changes occur by
button presses. Hence, when the user button on the STM32F4 board is pressed once,
toggling of the red and green LEDs should start with 1 s interval. When the user
button is pressed twice, the toggling period should become 2 s. When the button
is pressed thrice, the toggling period should decrease to 1 s again. This operation
should continue periodically with this setup indefinitely.

4.12. We would like to form a digital dice. We throw the dice by pressing the user
button on the STM32F4 board. Output of the digital dice is the red and green LEDs



80 4 Digital Input and Output

on the board. Since we have two LEDs, the dice can produce four values as 00 (both
LEDs off), 01 (only the red LED is on), 10 (only the green LED is on), and 11 (both
LEDs are on). Form a project to satisfy these constraints using:

(a) C language under STM32CubeIDE. Please use the functions srand() and
rand() to generate random numbers.

(b) C++ language under Mbed. Please use the functions srand() and rand() to
generate random numbers.

(c) MicroPython. Please use the function pyb.rng() to generate random numbers.
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5Interrupts and Power Management

5.1 The Interrupt Concept in Embedded Systems

The interrupt usage is almost inevitable in embedded systems. On the other hand,
interrupts depend on a signal generated either by hardware or another dedicated
software module. Hence, handling and using the interrupt is slightly different
from standard programming practices. Therefore, we will start with explaining the
general interrupt concepts in this section. Then, we will explore how interrupts are
handled in the STM32F4 microcontroller.

5.1.1 Interrupts in General

An embedded system should be interacting with the outside world by its nature.
Moreover, it should respond to a request coming from the user. One option to handle
such requests is forming an infinite loop in the code and checking requests in a
continuous manner. Although this method is useful in its own rights, it blocks the
CPU. To overcome this problem and freeing up the CPU from waiting in an infinite
loop, a different programming approach is needed. The interrupt concept comes into
play for this purpose. Within this approach, asynchronous or periodic requests can
be handled without letting the CPU to wait for them indefinitely. One can think of
interrupt as a response mechanism to an input signal such that when it occurs, a
predefined function is executed by the CPU. The difference of the interrupt is that
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when the required input is not fed to the microcontroller, the CPU performs its usual
synchronous operation. Hence, it does not wait for an event to occur in the infinite
loop.

Let us summarize the overall interrupt operation on an actual example. Assume
that the microcontroller controls a DC motor by sending a signal to it periodically.
We will explain how this can be done in Chap. 13. The user can press a button to
start or stop the motor. Another button can be used to change rotation direction
of the motor. These button presses can happen any time. Hence, the CPU should
handle these asynchronous inputs besides feeding the signal to the motor. Now, let
us formalize this setup by using interrupts.

In our example, the interrupts are generated when two separate buttons connected
to the microcontroller pins are pressed. Hence, we have GPIO interrupts. To handle
these, we should set up the microcontroller such that related GPIO pins should be
able to generate interrupt requests. In other words, the related pins should be allowed
to generate interrupts. Hence, the programmer should adjust properties of each pin
based on its registers. The user should also set priority to each interrupt request. In
other words, the user should rank the interrupt requests coming from the start-stop
and rotation direction buttons. The usual practice here is that the request coming
from the start-stop button should be handled first. Hence, it should have precedence
over the rotation direction button interrupt request. As these settings are done, the
pins will be ready to form interrupt requests. Besides, the CPU should be set to
accept and handle these requests. This is done by setting a special register within
the CPU.

As the microcontroller is set up to handle the interrupt requests, let us observe
what happens when they occur. When a button (either controlling the start-stop or
rotation direction) connected to the pin is pressed, the voltage difference there is
sensed by an edge detector circuit connected to the pin of the microcontroller. As a
result, a flag is set indicating that the pin generated an interrupt request.

A special module handles this interrupt request. To do so, it first checks whether
the request is allowed or not. Then, the module checks priority of the incoming
interrupt such that it should precede the existing operation. We have three scenarios
based on the current state of the CPU. We will explain them in detail in Sect. 5.1.2.3.

What we mean by responding to the interrupt request is as follows. The CPU
is diverted to the function to be executed as a response to the interrupt request.
This function is called interrupt service routine (ISR) or callback function. For our
example, the motor start-stop and rotation direction change operations should be
done within their specific callback functions. As a note, these functions are defined
within the code. However, they are not called by their name in the code. Instead, the
hardware signal generated by the associated button press calls each function. As the
CPU starts executing the callback function, the related flag should be reset. Hence,
the CPU knows that the interrupt is handled and there is no need to pay attention to
it again. As the operation within the callback function is done, the CPU turns back
to its previous operation.

As can be seen in our example, the asynchronous button press is processed by
the interrupt operation such that it is handled by a different mechanism. The reader
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should pay attention to some key issues here. The first and most important one
is that the time spent in the callback function should be short. Hence, the usual
synchronous operations will not be affected much. The second issue is that, since
callback is yet another function, data exchange between it and the main function
should be handled appropriately. One option here is using global variables. Third,
the interrupt request flag should be reset when the callback function is executed.
Hence, the CPU will not be confused by assuming that the interrupt request is not
handled and try to serve it again.

The GPIO interrupt example we have provided falls into the maskable interrupts
case. This means that the user can disable an interrupt request within this group.
Hence, it may not be served at all. There is another group called non-maskable
interrupts. As the name implies, an interrupt request within this group must be
handled. These interrupts represent key operations such that when not served, they
cause the microcontroller to malfunction. Reset is one such interrupt. As a matter
of fact, when we debug our code and embed it on the microcontroller, a reset signal
is generated such that the CPU goes to the beginning of the code to be executed.
We may also generate the reset signal by pressing the reset button on the board.
When this signal is generated, the CPU stops what it is doing and turns back to the
beginning of the code.

5.1.2 Interrupts in the STM32F4Microcontroller

Interrupts fall into the general exceptions category in Arm® architecture. An
exception can be taken as an operation changing program execution flow of the
CPU. It can either originate from an internal source, such as faulty operations within
the CPU, or from hardware peripheral unit, such as GPIO pins. We will not deal with
the former exception concepts in this book. Instead, we direct the reader to Yiu’s [3]
excellent book on Arm® Cortex™-M microcontrollers for exceptions originating
from faulty operations. We will only focus on interrupt handling and usage instead.
To note here, there is also event under the exception category. Different from the
interrupt, the event does not direct the CPU to the callback function. Instead, it
is used to trigger the peripheral units most of the times. For more information on
events, please see [2].

We should also mention operation modes of the CPU based on interrupts. When
executing a sequential code, the CPU is in thread mode. When an interrupt request
comes and the CPU starts executing the related callback function, then it will be
in handler mode. The thread and handler modes have different ways of reaching
registers. However, this topic is beyond the scope of this book. Therefore, we again
direct the reader to Yiu’s [3] book on this topic. We will briefly mention the thread
and handler modes in the following sections whenever needed.

We provide block diagram of the STM32F4 interrupt-based modules in Fig. 5.1.
As can be seen in this figure, there are four main blocks related to interrupt handling
in the STM32F4 microcontroller. The first block contains peripheral units (such as
timers, ADC, and UART modules) which can generate interrupt requests. Within
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Fig. 5.1 Block diagram of the STM32F4 interrupt-based modules

the second block, GPIO pin interrupts are handled by the extended interrupts and
events controller (EXTI). In the third block, all interrupt requests (whether generated
by a peripheral unit or EXTI) are handled by the nested vector interrupt controller
(NVIC). In the fourth block, accepted interrupt requests are processed by the CPU.
Next, we will focus on each module separately to emphasize its role in interrupt
handling and execution stages.

5.1.2.1 Interrupt Operations in Peripheral Units
As explained in the previous section, peripheral units can generate interrupt
requests. This is done in several ways. For example, a GPIO pin can generate an
interrupt request when it observes a low to high or high to low voltage transition.
The timer can generate periodic interrupt requests. The ADC module can generate
an interrupt request when the analog to digital conversion operation is finished.
The UART module can generate an interrupt request after receiving or submitting
a packet. We will focus on interrupt-based operations for each peripheral unit in
its dedicated chapter except GPIO interrupts. The EXTI module handles GPIO
interrupt operations in the STM32F4 microcontroller. Therefore, we will introduce
this module next.

There is a general structure for interrupt operation via peripheral units. Each
peripheral unit has a specific register to enable or disable its interrupts. Besides, the
unit has a flag indicating the interrupt request. In other words, if an interrupt request
is generated by the peripheral unit, a flag is raised to indicate that. Then, the request
is handled by the NVIC module.

5.1.2.2 Extended Interrupts and Events Controller
The STM32F4 microcontroller has a dedicated module, called extended interrupts
and events controller (EXTI), to handle external interrupts from some peripheral



5.1 The Interrupt Concept in Embedded Systems 85

Fig. 5.2 Detailed block diagram of the EXTI module

units. In this chapter, we will focus on this module while handling GPIO interrupts.
As can be seen in Fig. 5.1, the EXTI module stands between the GPIO pins and
NVIC module. We provide a more detailed block diagram of the EXTI module in
Fig. 5.2.

As can be seen in Fig. 5.2, GPIO pins are grouped within themselves and fed
to separate multiplexers. Each multiplexer has an output pin called EXTI0, EXTI1,
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and so on. To be more specific, each zeroth pin of all ports is connected to the
same multiplexer. Output of it is called EXTI0. Likewise, each first pin of all ports
is connected to another multiplexer having output EXTI1. Moreover, each EXTI
output is not directly connected to the NVIC module. EXTI outputs 1 to 4 are
directly connected to NVIC. EXTI outputs 5 to 9 are grouped together and fed as
a single input to NVIC. Likewise, EXTI outputs 10 to 15 are grouped together and
fed as another single input to NVIC. Hence, the EXTI module groups GPIO pins
such that they can be connected to the NVIC module. The drawback of this setup
is that we cannot distinguish two interrupts originating from the same group. As an
example, it is not possible to distinguish interrupts from GPIO pins PA6 and PA7.

The EXTI module can be used to enable and configure GPIO interrupts. This
is done by its dedicated registers. Related to this, the module also allows masking
an interrupt for its specific output. As for configuration, the EXTI module allows
generating a GPIO interrupt request by observing a low to high or high to low
transition in the pin. Hence, the user can generate an interrupt by either an active
high or low input (as introduced in Sect. 4.2) from the button connected to that pin.

As the EXTI module is used to enable the GPIO interrupt for a specific pin and
the required transition (either low to high or high to low) is observed there, an
interrupt request is generated. Hence, a bit corresponding to the EXTI line is set.
Afterward, NVIC handles the operations to be explained next.

5.1.2.3 Nested Vectored Interrupt Controller
The nested vectored interrupt controller (NVIC) manages interrupts from peripheral
units and internal exceptions originating from the CPU (such as fault handling).
Since we do not cover exceptions originating from the CPU in this chapter, we will
focus on interrupt handling operations within NVIC. Let’s summarize them.

If a single interrupt request comes from a peripheral unit while the CPU is in
thread mode (performing its usual sequential operation), then NVIC checks whether
that request is allowed or not. It also checks whether the CPU accepts interrupt
requests in general. If this is the case, then NVIC directs the CPU to execute the
corresponding callback function for the incoming interrupt request. Hence, the CPU
goes to the handler mode. As the callback function is executed, the CPU turns back
to thread mode waiting for the next interrupt request. This is the simplest scenario
for an interrupt operation.

If more than one interrupt request comes at the same time, or an interrupt request
comes while another one is being serviced, then NVIC organizes their execution
based on their priority level. To do so, interrupt requests coming from different
sources should be ordered. This is done within NVIC. Although there is a standard
order for interrupt priority levels, the user can adjust them by his or her needs while
forming the project. The important point here is that a priority level cannot exceed
three important (and non-maskable) interrupts.

As the priority level is set and a new interrupt request comes while another one is
being serviced, the following scenarios can occur. First, if the CPU is in thread
mode, then the priority of the incoming interrupt precedes it. Second, the CPU
may be in handler mode responding to another interrupt with higher priority. In
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this case, response to the incoming low priority interrupt should wait till the end of
this operation. Then, the low priority interrupt is handled. Third, the CPU may be in
handler mode responding to an interrupt request with lower priority. Since the new
incoming interrupt request has higher priority, the low priority one is suspended and
the incoming new interrupt is handled. Afterward, the CPU turns back to handle the
low priority interrupt request.

5.1.2.4 Interrupt Operations in the CPU
As the NVIC module handles the interrupt request and directs the program flow, then
the request is processed by the CPU. The first operation here is checking whether the
interrupt requests are generally allowed by the CPU. If this condition is satisfied and
CPU allows processing interrupt requests, then the corresponding callback function
is executed by the CPU. Hence, CPU goes to handler mode. To note here, it is
the user’s responsibility to form the callback function. Besides, the corresponding
interrupt flag should be reset within this function. Hence, the CPU will not serve it
again. This reset operation is done automatically for most peripheral units. As the
interrupt is serviced, then the CPU turns back to the thread mode again.

5.2 Interrupt Setup in the STM32F4Microcontroller

We should prepare the STM32F4 microcontroller to respond to interrupts. We show
how this can be done in C, C++, and MicroPython languages in this section. To
note here, while setting up interrupt properties in C language, we will use the
STM32CubeMX interface.

5.2.1 Interrupt Setup via C Language

STM32CubeIDE adjusts all interrupt related hardware properties, such as interrupt
priority and NVIC module setup, automatically as the project is compiled. Let’s
look at an example while configuring a GPIO pin interrupt.

Assume that the project has already been created in STM32CubeIDE following
the steps in Sect. 3.1.3. First, open the “Device Configuration Tool” window by
clicking the “.ioc” file in the project explorer window. Hence, STM32CubeMX
starts. Then, click on the GPIO pin on the STM32F4 microcontroller and select
the GPIO type as “GPIO_EXTI” for pin interrupt source as in Fig. 5.3. Under the
“System Core—GPIO” section, GPIO mode can be selected among the following
options as “external interrupt mode with rising edge trigger detection,” “external
interrupt mode with falling edge trigger detection,” “external interrupt mode with
rising/falling edge trigger detection,” “external event mode with rising edge trigger
detection,” “external event mode with falling edge trigger detection,” and “external
event mode with rising/falling edge trigger detection.” The difference between the
event and interrupt at this stage is as follows. If an event-based option is selected,
then the CPU goes to the main loop in the code after waking up from a sleep mode
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Fig. 5.3 Interrupt configuration in STM32CubeMX

to be explained in Sect. 5.4. In the interrupt selection, the CPU starts executing the
callback function after waking up from the sleep mode. Select appropriate type
such as “external interrupt mode with falling edge trigger detection” here. In the
same section, the pull-up/pull-down resistor can be activated using the “GPIO Pull-
down” option. Select pull-up/pull-down resistor here. Afterward, enable the EXTI
line interrupt under NVIC tab located in the same window or under “System Core—
NVIC” section. The reader can also change the interrupt priority under this section.

5.2.2 Interrupt Setup via C++ Language

In order to set up GPIO interrupts in Mbed, we should first adjust GPIO pins. This
can be done by the class InterruptIn. The usage of this class is similar to the
class definition DigitalIn introduced in Sect. 4.4.2. Different from there, this class
definition also enables pin interrupts. We should also enable the general interrupts in
the main function. This can be done by the function __enable_irq(). Likewise,
we can disable maskable interrupts by the function __disable_irq() available
under Mbed. Hence, we can free the CPU to respond maskable interrupts if needed.

While setting up the interrupt, we should also form the callback function under
Mbed. Assume that we want to toggle the green LED on the STM32F4 board
at each user button press. We can define a function performing this operation as
a response to the GPIO interrupt originating from the user button. We will form
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our interrupt class as InterruptIn button(BUTTON, PullDown). Then, we can
form our callback function.

5.2.3 Interrupt Setup via MicroPython

GPIO interrupts can also be controlled in MicroPython. The function pyb.ExtInt
(pin, mode, pull, callback) is used to configure interrupt properties for
the desired pin. Here, pin is the pin name the interrupt source is connected to.
mode is the interrupt mode and can be pyb.ExtInt.IRQ_RISING for triggering
on rising edge, pyb.ExtInt.IRQ_FALLING for triggering on falling edge, or
pyb.ExtInt.IRQ_RISING_FALLING for triggering on both edges. pull is the
internal pull-up/pull-down resistor. It can be pyb.Pin.PULL_NONE for disabling
the pull-up/pull-down resistor, pyb.Pin.PULL_UP for enabling the pull-up resistor
or pyb.Pin.PULL_DOWN for enabling the pull-down resistor. callback is the name
of the interrupt callback function in MicroPython. It has one input as the line that
triggers the interrupt.

The pyb module in MicroPython has no predefined function for changing inter-
rupt priorities. Therefore, we created a custom function set_interrupt_priority
(irq_number, priority_level). Here, irq_number is the predefined number
for each interrupt source. priority_level is the desired priority level which
can be between 0 and 15. We provide this function in Listing 5.1. Here,
Priority_base_address is the base address for interrupt priority level registers.
Each 8-bit priority level register can be accessed using this base register address and
related interrupt source number. A list of all interrupt sources and related interrupt
source numbers are also provided in this file. Finally, it can be seen that priority
level is shifted by 4 bytes before it is saved to the related register. The reason for
this is that the priority level is kept in highest 4 bits of the related register.

Listing 5.1 Custom function for changing interrupt priorities in MicroPython

# Import stm module to project
import stm

# Constant base address for interrupt priority level register
Priority_base_address = const(0xE000E400)

# Constant variables for interrupt number definitions
WWDG_IRQn = const(0) # Window WatchDog Interrupt
PVD_IRQn = const(1) # PVD through EXTI Line detection Interrupt
TAMP_STAMP_IRQn = const(2) # Tamper and TimeStamp interrupts

through the EXTI line
RTC_WKUP_IRQn = const(3) # RTC Wakeup interrupt through the EXTI

line
FLASH_IRQn = const(4) # FLASH global Interrupt
RCC_IRQn = const(5) # RCC global Interrupt
EXTI0_IRQn = const(6) # EXTI Line0 Interrupt
EXTI1_IRQn = const(7) # EXTI Line1 Interrupt
EXTI2_IRQn = const(8) # EXTI Line2 Interrupt
EXTI3_IRQn = const(9) # EXTI Line3 Interrupt
EXTI4_IRQn = const(10) # EXTI Line4 Interrupt
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DMA1_Stream0_IRQn = const(11) # DMA1 Stream 0 global Interrupt
DMA1_Stream1_IRQn = const(12) # DMA1 Stream 1 global Interrupt
DMA1_Stream2_IRQn = const(13) # DMA1 Stream 2 global Interrupt
DMA1_Stream3_IRQn = const(14) # DMA1 Stream 3 global Interrupt
DMA1_Stream4_IRQn = const(15) # DMA1 Stream 4 global Interrupt
DMA1_Stream5_IRQn = const(16) # DMA1 Stream 5 global Interrupt
DMA1_Stream6_IRQn = const(17) # DMA1 Stream 6 global Interrupt
ADC_IRQn = const(18) # ADC1, ADC2 and ADC3 global Interrupts
EXTI9_5_IRQn = const(23) # External Line[9:5] Interrupts
TIM1_BRK_TIM9_IRQn = const(24) # TIM1 Break interrupt and TIM9

global interrupt
TIM1_UP_TIM10_IRQn = const(25) # TIM1 Update Interrupt and TIM10

global interrupt
TIM1_TRG_COM_TIM11_IRQn = const(26) # TIM1 Trigger and

Commutation Interrupt and TIM11 global interrupt
TIM1_CC_IRQn = const(27) # TIM1 Capture Compare Interrupt
TIM2_IRQn = const(28) # TIM2 global Interrupt
TIM3_IRQn = const(29) # TIM3 global Interrupt
TIM4_IRQn = const(30) # TIM4 global Interrupt
I2C1_EV_IRQn = const(31) # I2C1 Event Interrupt
I2C1_ER_IRQn = const(32) # I2C1 Error Interrupt
I2C2_EV_IRQn = const(33) # I2C2 Event Interrupt
I2C2_ER_IRQn = const(34) # I2C2 Error Interrupt
SPI1_IRQn = const(35) # SPI1 global Interrupt
SPI2_IRQn = const(36) # SPI2 global Interrupt
USART1_IRQn = const(37) # USART1 global Interrupt
USART2_IRQn = const(38) # USART2 global Interrupt
EXTI15_10_IRQn = const(40) # External Line[15:10] Interrupts
RTC_Alarm_IRQn = const(41) # RTC Alarm (A and B) through EXTI

Line Interrupt
OTG_FS_WKUP_IRQn = const(42) # USB OTG FS Wakeup through EXTI

line interrupt
DMA1_Stream7_IRQn = const(47) # DMA1 Stream7 Interrupt
SDIO_IRQn = const(49) # SDIO global Interrupt
TIM5_IRQn = const(50) # TIM5 global Interrupt
SPI3_IRQn = const(51) # SPI3 global Interrupt
DMA2_Stream0_IRQn = const(56) # DMA2 Stream 0 global Interrupt
DMA2_Stream1_IRQn = const(57) # DMA2 Stream 1 global Interrupt
DMA2_Stream2_IRQn = const(60) # DMA2 Stream 2 global Interrupt
DMA2_Stream3_IRQn = const(59) # DMA2 Stream 3 global Interrupt
DMA2_Stream4_IRQn = const(60) # DMA2 Stream 4 global Interrupt
OTG_FS_IRQn = const(67) # USB OTG FS global Interrupt
DMA2_Stream5_IRQn = const(68) # DMA2 Stream 5 global Interrupt
DMA2_Stream6_IRQn = const(69) # DMA2 Stream 6 global Interrupt
DMA2_Stream7_IRQn = const(70) # DMA2 Stream 7 global Interrupt
USART6_IRQn = const(71) # USART6 global interrupt
I2C3_EV_IRQn = const(72) # I2C3 event interrupt
I2C3_ER_IRQn = const(73) # I2C3 error interrupt
FPU_IRQn = const(81) # FPU global interrupt
SPI4_IRQn = const(84) # SPI4 global Interrupt

# Function to set ptiority level of selected interrupt source
def set_interrupt_priority(irq_number , priority_level):

stm.mem8[Priority_base_address + irq_number] =
priority_level << 4
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5.3 Interrupt Usage in the STM32F4Microcontroller

As the setup is done, we can use interrupts for our specific purposes. Here, we
provide C, C++, and MicroPython language-based examples. To be more readable,
we handled the same examples in three languages. Hence, the reader can grasp the
interrupt usage in any language. To note here, we only considered GPIO interrupts
in this section since we have not covered the remaining peripheral units yet. We will
cover further interrupt examples in the following chapters as other peripheral units
are introduced.

5.3.1 Interrupt Usage via C Language

HAL library has special functions to handle interrupts. These will be of use when
an interrupt-based code is written in C language under STM32CubeIDE. Next, we
only provide the one related to GPIO interrupts in detail.

void HAL_GPIO_EXTI_Callback (uint16_t GPIO_Pin)
/*
GPIO_Pin: The pin to be connected to the corresponding EXTI line.

This parameter can be one of GPIO_PIN_0 ... GPIO_PIN_15
*/

When a GPIO interrupt occurs, the NVIC module directs the CPU to its
corresponding ISR. The HAL library handles the ISR such that within it the
HAL_GPIO_EXTI_Callback is called. Without complicating the concepts, we
can safely say that HAL_GPIO_EXTI_Callback is the callback function called
when a GPIO interrupt occurs. We should define this function within the “main.c”
file under STM32CubeIDE. To note here, this function is generated in weak
form (without any content) automatically in the file “stm32l4xx_hal_gpio.c”
when a project is generated. Hence, when the reader forgets defining the actual
HAL_GPIO_EXTI_Callback function, the code still runs. When the user defines his
or her function, then this weak function is ignored.

We next provide two examples on the usage of GPIO interrupt functions. The
first example, with the C code given in Listing 5.2, aims to familiarize the reader
with the setup and usage of interrupts. Here, when the onboard button (connected
to PA0 pin of the STM32F4 board) is pressed and released, the green and red LEDs
(connected to PG13 and PG14 pins of the STM32F4 board) toggle. The toggling
operation is done in the callback function. As a side note, this example performs the
same operation as in Listing 4.2 but with interrupt usage.

Listing 5.2 Toggle the onboard red and green LEDs by GPIO interrupt, the C code

/* USER CODE BEGIN PV */
int counter1 = 0, counter2 = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
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{
if (GPIO_Pin == GPIO_PIN_0)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
}
counter2++;
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
counter1++;
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In order to execute the code in Listing 5.2, create an empty project under
STM32CubeIDE and configure the LED pins of the STM32F4 microcontroller
as output. Then, configure the button pin as GPIO_EXTI and select the mode
as “external interrupt mode with falling edge trigger detection.” As the project is
compiled and run, the CPU executes the callback function when the button is pressed
and then released. In the callback function, the green and red LEDs toggle according
to the interrupt source pin. By adding a breakpoint, the reader can observe that the
counter in the infinite loop increases while the CPU is not in handler mode. The
counter in the callback function increases only once the button is pressed and then
released.

The second example aims to familiarize the reader with the nested interrupt and
priority mechanisms. To do so, we should connect an external normally open button
in active high configuration and a capacitor to the pin PA5 as in Fig. 5.4. Afterward,
we should configure the onboard and external button pins as GPIO_EXTI and select
their mode as “external interrupt mode with falling edge trigger detection.”

We should modify the callback function in Listing 5.2 with the new callback
functions as in Listing 5.3. We should also change the interrupt priority of EXTI
line 0 interrupt to 1 and EXTI line[9:5] interrupt to 2 while configuring interrupt
sources. The reader can execute the new code with the modified setup to see the
effect of these changes.

Listing 5.3 The effect of priority on GPIO interrupts, the C code

/* USER CODE BEGIN PV */
int counter1 = 0, counter2 = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
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Fig. 5.4 External button
connection, second interrupt
example with C code

{
if (GPIO_Pin == GPIO_PIN_0)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
HAL_Delay(5000);
}
if (GPIO_Pin == GPIO_PIN_5)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
HAL_Delay(5000);
}
counter2++;
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
counter1++;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

The second example is formed in two separate parts. In the first part, a low
priority interrupt comes when the CPU is handling a high priority interrupt. Hence,
the low priority interrupt is served after the high priority one is served. First, press
the onboard button on the STM32F4 board. Release the onboard button, wait for 1 s,
and press and release the external button. You can observe that the second press will
not be recognized until four more seconds pass. In the second part, a high priority
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interrupt comes when the CPU is executing a low priority interrupt. Due to interrupt
priority, the high priority interrupt is served immediately. Now, press and release
the external button and wait for 1 s. Then, press and release the user button on the
STM32F4 board. This time the second press will be recognized immediately. This
example shows how the priority mechanism works.

5.3.2 Interrupt Usage via C++ Language

As we adjust all necessary properties for the interrupt setup, we can form our main
function in Mbed. Here, we should decide on when the interrupt occurs. We have
two options here as the falling or rising edge of the button press. In the former
case, we should use the function fall associated with the InterruptIn class. In
the latter case, we should use the function rise associated with the InterruptIn
class. Assume that we select the falling edge to generate the interrupt. Hence, our
setup will be center.fall(&ISR_callback). Here, the user-defined function
&ISR_callback is called when the button interrupt occurs and all conditions are
satisfied. We provide an example on the usage of all settings in Listing 5.4. To
execute this code in Mbed Studio, we should copy and paste it to the “main.cpp”
file in our active project.

Listing 5.4 Toggle the onboard green LED using an interrupt, the C++ code

#include "mbed.h"

InterruptIn userButton(BUTTON1);
DigitalOut greenLED(LED1);

void getButtons()
{
greenLED = !greenLED;
}

int main()
{
greenLED = 0;
userButton.fall(&getButtons);
__enable_irq();

while (true);
}

As can be seen in Listing 5.4, the CPU waits in an infinite loop formed by the
code line while(true). When the user presses the button, this loop is interrupted.
The CPU executes the function ISR_callback. Afterward, it turns back and waits
in the infinite loop for another interrupt.
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5.3.3 Interrupt Usage via MicroPython

We can redo the examples given in Sect. 5.3.1 using MicroPython. First, we will
toggle the onboard red and green LEDs using onboard push button. Initially, green
LED is turned on and red LED is turned off. When the user push button is pressed,
both LEDs are toggled and the second counter is increased by one to keep the
number of interrupts. The MicroPython code for this example is given in Listing 5.5.

Listing 5.5 Toggle the onboard LEDs using an interrupt, the MicroPython code

import pyb
counter2 = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)

def getButtons(id):
global counter2
if id == 0:

greenLED.value(not greenLED.value())
redLED.value(not redLED.value())
counter2 = counter2 + 1

def main():
global counter2
counter1 = 0
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
greenLED.value(1)
redLED.value(0)
while True:

counter1 = counter1 + 1

main()

Next, we can add 5 s delay after toggling LEDs in the callback function for our
example in Listing 5.5 to show interrupt priorities in MicroPython. Also, we will
change the priority level of EXTI line 0 interrupt to 1 and the priority level of
EXTI line[9:5] interrupt to 2. Here, user push button is connected to EXTI line 0
interrupt source, and an external push button is connected to EXTI line[9:5] interrupt
source. Here, we should copy the “mympfunctions.py” file in Listing 5.1 to the
microcontroller flash and import the module mympfunctions in the “main.py” file
in order to use the function set_interrupt_priority. MicroPython code for this
example is given in Listing 5.6.

Listing 5.6 Toggle the onboard LEDs using an interrupt with priority settings, the MicroPython
code

import pyb
from mympfunctions import *

counter2 = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)

def getButtons(id):
global counter2
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if id == 0:
greenLED.value(not greenLED.value())
pyb.delay(5000)

if id == 5:
redLED.value(not redLED.value())
pyb.delay(5000)

counter2 = counter2 + 1

def main():
counter1 = 0
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
extButtonInt = pyb.ExtInt(’PA5’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
greenLED.value(1)
redLED.value(0)
set_interrupt_priority(EXTI0_IRQn , 1)
set_interrupt_priority(EXTI9_5_IRQn , 2)
while True:

counter1 = counter1 + 1

main()

The code in Listing 5.6 shows that interrupt priorities can be set in MicroPython
as well. When the onboard push button is pressed, the green LED toggles and 5 s
delay starts. During this time, pressing external push button connected to pin PA5
does not affect the operation and the red LED cannot be toggled until the 5 s delay is
over. If the onboard push button is pressed after the external push button, the green
LED toggles immediately without waiting for the 5 s delay. The reason is that the
interrupt priority of EXTI line 0 is higher than EXTI line[9:5].

5.4 Power Management in Embedded Systems

Power management is the second topic to be considered in this chapter. We will start
with explaining its importance in embedded applications. Power management is also
closely related to the interrupt usage. Therefore, we will next form the link between
power management and interrupt usage. When talking about power management,
we should also understand how a power supply works. Hence, we will consider
battery and briefly summarize its properties in this section.

5.4.1 Importance of Power Management in Embedded
Applications

Embedded systems can be used in stand-alone applications in which they depend
on battery. In order to extend working time of the overall system, we have three
options. First, we can select a battery with larger capacity. Second, we can design a
system with battery recharging capability. These two options are related to the power
supply side. The third option is decreasing power consumption of the embedded
system. Due to importance of the problem, recent microcontrollers provide power
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management options to the user. Arm® Cortex™-M architecture is well-known in
this respect. To note here, improving the battery capacity and using microcontroller
power management options together provide the best possible combination.

Power management in microcontrollers starts by decreasing the power consump-
tion of the device. To do so, all peripheral units should be turned off when not used
so that they do not dissipate power. This is done by inhibiting the clock signal sent to
them. As a note, all peripheral units are turned off after resetting the microcontroller.
It is the responsibility of the programmer to turn on the peripheral unit to be used
when needed. Besides, the user should also select the appropriate power mode for
the microcontroller.

5.4.2 The Link Between Power Management and Interrupt Usage

The microcontroller performs its operations in active (run) mode. However, this
mode has the highest power consumption. Therefore, we should let the microcon-
troller run in an appropriate low power mode whenever possible.

One of the most important usage areas of interrupts is letting the CPU in low
power modes. This is done as follows. If the operation to be performed by the CPU
is infrequent, one option is letting the CPU to run continuously in an infinite loop to
wait for the event to be responded. Since the event is rare, most of the power will be
dissipated while waiting for the event to occur. The next option is setting the system
such that it stays in an appropriate low power or sleep mode. When the external
event occurs, it triggers an interrupt. Afterward, the CPU wakes up, performs the
operation related to the event in active mode, and goes back to its previous low
power mode again. Hence, the system stays in active mode for a short period of
time or when only needed. For the remaining times, the system stays in low power
mode and does not dissipate power as it does in the active mode.

Let’s consider an actual example on the usage of interrupts to decrease the overall
power consumption in operation. In our example, we press a button to open a gate.
We can safely assume that the button press is rare. If the interrupt-based setup is
not used, the system waits in active mode all the times. Meanwhile, the power
consumption will be maximum. On the other hand, if the button press generates
an interrupt, then we can let the system to sleep till the interrupt occurs. Hence, it
dissipates the lowest possible power during this time. The system will be in active
mode only while executing the callback function. This will lead to the overall power
consumption to be minimal. This scenario indicates the importance of interrupt
usage in power management.
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5.4.3 Battery as Power Supply

The embedded system is powered by battery most of the times when used in a
stand-alone application. Hence, the reader should know fundamental properties of
the battery such that the stand-alone application can be realized efficiently.

There are rechargeable and disposable batteries. As the name implies, the
rechargeable battery can be used more than once. Although this may seem reason-
able, the charging circuit increases the overall cost. Besides, rechargeable batteries
are expensive. As a final note, lifetime of a rechargeable battery is around 1000–
2000 charging. On the other hand, the disposable battery can be used without any
charging circuitry. It is cheap. However, the disposable battery can only be used
once and should be replaced when depleted.

Capacity of a battery is provided in milliampere hour (mAh) by the manufacturer.
This indicates the current value the battery can provide within 1 h in predefined
voltage level. The other explanation is as follows. Capacity indicates how many
hours can the battery be used when the mentioned current is drawn from it. Let’s
consider an example to explain this concept. Assume that we have a battery with
2000 mAh capacity. Assume further that we draw 150 mA current during 15 s
and 2 mA current during 45 s from the battery within 1 min. We can calculate the
time needed for the battery to deplete as follows. Every minute, the average current
needed will be 150 × 1/4 + 2 × 3/4 = 39 mA. Therefore, the time needed for
the battery to deplete can be found as 2000 mAh / 39 mA = 51.28 h in this usage
scenario.

As a final note, the battery may work in different characteristics when excessive
or very low current is drawn from it. However, the average current value is taken
for granted for most calculations. Besides, each battery from the same manufacturer
may have slightly different characteristics. Hence, nominal values are used in most
calculations. We will follow the same reasoning in this book as well. The user should
take these deviations into account as safety margins.

5.5 Power Management in the STM32F4Microcontroller

We will focus on power management issues in the STM32F4 microcontroller in
this section. Therefore, we will first summarize the power management features
followed by power supply options for the microcontroller. Then, we will analyze the
power modes available in the STM32F4 microcontroller. Finally, we will introduce
STM32CubeMX properties for power usage analysis.

5.5.1 Power Management Features

The STM32F4 microcontroller has several key features related to power manage-
ment. These can be summarized as follows. The microcontroller allows multiple
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independent power supply usage. This leads to reducing power consumption while
some peripherals are supplied at higher voltages. The microcontroller has several
power modes. These allow the programmer to benefit from the microcontroller
resources while saving power. Multiple interrupt sources can be used to wake up the
CPU from a low power mode. Hence, different pin and peripheral configurations
may be applied. For example, the STM32F4 microcontroller can be woken up with
user interaction by a button connected to a GPIO pin or periodically using timers.
The microcontroller has a battery backup domain. This can be used to keep some
peripheral units active (including RTC to be introduced in Chap. 6) and certain
backup registers (to be introduced in Chap. 9) without the main power supply. This
allows saving the last state of the microcontroller when the main power is lost.

5.5.2 Power Supply Options

We introduced powering options for the STM32F4 board in Sect. 2.3.3. Here, we
will focus on feeding power to the STM32F4 microcontroller. We provide the power
supply options for our microcontroller in Table 5.1. To note here, other members of
the STM32F4 microcontroller family may have more power supply options. Since
we will not deal with them in this book, we did not consider them. The reader can
see these options at [1, 2].

Table 5.1 deserves special consideration. Here, VDD supplies all GPIO ports,
the reset circuitry, temperature sensor, all internal clock sources, and the standby
circuitry. VDD also supplies an embedded voltage regulator which supplies all
digital circuitry, such as CPU, digital peripheral units, SRAM, and flash. Regulator
is an electronic component or circuitry (depending on the type) which generates
a fixed voltage output regardless of changing input voltage level. The voltage
regulator in the STM32F4 microcontroller operates in different modes depending
on the power mode the microcontroller is in. Since we will only focus on the power
modes in this book, we lead the reader to references for further information on
regulator operating modes [1, 2].

VDDA is the power supply for analog peripheral units since analog and digital
voltage levels may be different in operation. For such cases, a different analog
power supply is needed. To improve conversion accuracy, the ADC module has
an independent power supply which can be separately filtered and shielded from
noise on the PCB. The ADC voltage supply input is available on a separate

Table 5.1 The STM32F4
microcontroller power supply
options

Power supply Description Voltage level (V)

VDD Main power supply 1.7–3.6

VDDA Analog power supply 1.7–3.6

VBAT Backup power supply 1.65–3.6

VREF ADC/DAC reference voltage 1.7–3.6
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VDDA pin. An isolated supply ground connection is provided by the pin VSSA which
is connected to ground externally on the STM32F4 board. A backup battery can
be connected to the VBAT pin to supply the backup domain. However, this pin is
connected to VDD in the STM32F4 board. Hence, we cannot benefit from it. VREF

pins provide reference voltage to the ADC and DAC modules. We will explore how
these reference voltage values are used in Chap. 7.

The STM32F4 microcontroller also has a power supply supervisor circuitry. It
can be used to track, monitor, and manage power supplies mentioned in Table 5.1.
We refer the reader to the references for further information on the usage of this
circuitry [1, 2].

5.5.3 Power Modes

The STM32F4 microcontroller supports four power modes as run (active), sleep,
stop, and standby. These are tabulated in Table 5.2.

Let’s take a closer look at Table 5.2. As can be seen in this table, our first option
for operation is the run mode. This mode does not have any power saving property.
Hence, all peripherals and clock sources can be activated within it. The user has
five options for setting the main CPU clock between 180 and 120 MHz in the run
mode based on the regulator used. Our second option is the sleep mode. The CPU
is stopped in this mode. However, SRAM and all peripherals are active. These can
wake up the CPU by an interrupt. Our third option is the stop mode. This mode is
called deep sleep mode in Arm® literature. The stop mode achieves the lowest power

Table 5.2 The STM32F4 microcontroller power modes

CPU/SRAM/peripherals Max. clock

Power mode Regulator mode active speed (MHz)

Run Main-scale 1 (OverDrive) All active 180

Main-scale 1 All active 168

Main-scale 2 (OverDrive) All active 168

Main-scale 2 All active 144

Main-scale 3 All active 120

Sleep Main-scale 1 (OverDrive) SRAM/peripherals 180

Main-scale 1 SRAM/peripherals 168

Main-scale 2 (OverDrive) SRAM/peripherals 168

Main-scale 2 SRAM/peripherals 144

Main-scale 3 SRAM/peripherals 120

Stop Main-scale 3 SRAM –

Main-scale 3 (UnderDrive) SRAM –

Low power-scale 3 SRAM –

Low power-scale 3 (UnderDrive) SRAM –

Standby Power-down mode – –
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consumption while retaining the contents of SRAM and registers. The CPU can be
woken up from the stop mode by any of the EXTI line (the EXTI line source can be
one of the 16 external lines, the PVD output, the RTC alarm/wake-up/tamper/time
stamp events, the USB OTG FS/HS wakeup, or the Ethernet wakeup). Our fourth
option is the standby mode. Only the RTC, 4 kB of backup SRAM, and 20 backup
registers (80 bytes) are active in this mode. The CPU can exit from the standby
mode either by an external reset pin, a watchdog reset, a rising edge on one of the
enabled WKUPx pins or when a RTC event occurs. After waking up from standby
mode, code execution restarts in the same way as after a reset operation.

5.5.4 STM32CubeMX for Power Usage Analysis

STM32CubeMX has a power consumption calculator (PCC) tool which can be used
to estimate active, inactive, and average current consumption values for a given
scenario. The PCC tool also estimates the battery life when the one to be used in
operation is selected. The PCC tool can be used by setting up multiple steps such
that different power modes, clock source and frequency, and peripheral units can be
selected at each step. Hence, the user can check complex usage scenarios with the
tool.

In order to use the PCC tool, the reader should create a project as explained in
Sect. 3.1.5. Then, the reader should open the “Device Configuration Tool” window
by clicking the “.ioc” file in the project explorer window. Afterward, he or she
should click on the “Tools” tab as in Fig. 5.5. On the left side menu, a VDD value
and battery can be selected. On the right-hand side of the view, a new step can be
added by clicking the “New Step” button. While adding or editing a step, power
and memory settings, clocks, peripheral units, and other additional settings, such as
duration of a step, can be adjusted. When a new step is added and there is a transition
error between power modes, then the step turns to red on the list. Results are shown
as graphs in the display section of the tool.

We next provide an example on the usage of the PCC tool. Within this example,
we will calculate the current consumption when the CPU runs for 10 s when the
code in Listing 5.2 is executed. To do so, open the “.ioc” file in the project explorer
window, click on “Tools,” tab and add a new step. Here, choose the power mode
as “RUN,” power scale as “Scale-3-Low,” memory fetch type as “Flash,” and CPU
frequency as “25 MHz.” Enter the step duration as 10 s or 10000 ms and click the
“Enable IPs from Pinout” button. You may also enable IPs (peripherals) from the
peripheral selection menu in the middle. Once the configuration is complete, click
the “Add” button. You can observe the current consumption profile graph. As can be
seen there, approximately 11.41 mA average current is consumed in operation. Now,
edit the added step and change the step duration as 0.1 s or 100 ms. Add another
step, choose power mode as “STOP_NM (Normal Mode)” and clock configuration
as “Regulator_LP,” and set the step duration as 9.9 s or 9900 ms. This time, the
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Fig. 5.5 The PCC tool under STM32CubeMX

average current consumption drops down to approximately 401.2 μA. We will use
the PCC tool in the following sections to emphasize the usage of power modes in
general.

5.6 Usage of Power Modes in Code

We provide C, C++, and MicroPython codes on the usage of low power modes on
actual examples in this section. To note here, C and MicroPython programming
allows using all power modes. For the C++-based codes, we will use whichever
option is available.

5.6.1 Power Modes in C Language

Power modes can be entered and exited by executing HAL library functions in C
language. We will provide these next.

5.6.1.1 SleepMode
HAL library functions related to the sleep mode are as follows. The function
HAL_PWR_EnterSLEEPMode can be used to enter the sleep mode. The function
HAL_PWR_EnableSleepOnExit enables sleep-on-exit when returning from handler
to thread mode. Likewise, the function HAL_PWR_DisableSleepOnExit disables
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sleep-on-exit when returning from the handler to thread mode. We provide detailed
information on these functions next.

void HAL_PWR_EnterSLEEPMode (uint32_t Regulator , uint8_t
SLEEPEntry)

/*
Regulator: Specifies the regulator state. This parameter is not

used for the STM32F4 family. Hence, we should set it as
PWR_MAINREGULATOR_ON.

SLEEPEntry: Specifies if the sleep mode is entered with WFI or
WFE instruction. This parameter can be one of
PWR_SLEEPENTRY_WFI or PWR_SLEEPENTRY_WFE

*/

void HAL_PWR_EnableSleepOnExit (void)

void HAL_PWR_DisableSleepOnExit (void)

We next provide an example on the usage of sleep mode in C language. To do
so, we repeat the example given in Listing 5.2 to toggle onboard LEDs using GPIO
interrupts. However, instead of actively waiting in an infinite loop when the button
is not pressed, this time we let the CPU wait in sleep mode. To do so, the reader
should create an STM32CubeIDE project first. Then, the infinite loop in Listing 5.2
should be replaced by the code block in Listing 5.7. As the project is executed, the
reader can observe that both counters in the infinite loop and callback function do
not increase when the button is not pressed.

Listing 5.7 A sample code for the usage of sleep mode functions, in C language

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_SuspendTick();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
HAL_ResumeTick();

counter1++;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

The reader can observe that there are two extra functions used in Listing 5.7 as
HAL_SuspendTick() and HAL_ResumeTick(). These are related to the SysTick
and clock setup to be explained in detail in Chap. 6. However, we had to cover them
here since these two modules work in sleep mode. SysTick automatically generates
interrupts at every millisecond and wakes up the CPU. To avoid this, we had to
disable it before the sleep operation and enable it afterward as in Listing 5.7.

We can analyze the power consumption of the modified project by the PCC tool.
Here, the GPIOA and GPIOG ports are enabled. The power scale is set to “Scale-3-
Low,” memory fetch type to “Flash,” and CPU frequency to “25 MHz” for both run
and sleep modes. Under these conditions, the average current consumption will be
11.1 mA and 3.1 mA for the run and sleep modes, respectively.
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5.6.1.2 StopMode
HAL library functions related to the stop mode are as follows. The function
HAL_PWR_EnterSTOPMode can be used to enter the stop mode 0 or 1 by
specifying the regulator state. Likewise, the function HAL_PWREx_EnterUnder
DriveSTOPMode leads the microcontroller to the underdrive mode with low power
consumption. We provide detailed information on these functions next.

void HAL_PWR_EnterSTOPMode (uint32_t Regulator , uint8_t
STOPEntry)

/*
Regulator: Specifies the regulator state. This parameter is not

used for the STM32F4 family. Hence, we should set it as
PWR_MAINREGULATOR_ON.

STOPEntry: Specifies if stop mode is entered with WFI or WFE
instruction. This parameter can be one of PWR_STOPENTRY_WFI
or PWR_STOPENTRY_WFE.

*/

HAL_StatusTypeDef HAL_PWREx_EnterUnderDriveSTOPMode (uint32_t
Regulator , uint8_t STOPEntry)

We will next consider usage of the stop mode by repeating the example in
Listing 5.2. This time we let the CPU wait in stop mode instead of actively waiting
in an infinite loop when the user button is not pressed. As in the previous example,
the reader should first create a project. Then, he or she should use the code block
in Listing 5.8 to replace the infinite loop in Listing 5.2 and run the project. The
reader can observe that the counter in the infinite loop does not increase when
the button is not pressed. To note here, the functions HAL_SuspendTick() and
HAL_ResumeTick() are used to stop and start the SysTick, respectively. They are
added to avoid starting the SysTick during the debug session. They may not be
needed if the project is compiled and run without debugging it.

Listing 5.8 A sample code for the usage of stop mode functions, in C language

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_SuspendTick();
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON , PWR_STOPENTRY_WFI

);
HAL_ResumeTick();

counter1++;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

We can analyze power consumption of the modified project by the PCC tool.
Here, the GPIOA and GPIOG ports are enabled. The power scale is set to “Scale-3-
Low,” memory fetch type to “Flash,” and CPU frequency to “25 MHz” for both run
mode. Also the clock configuration is set to “Regulator_LP” for stop mode. Under
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these conditions, the average current consumption will be 11.1 mA and 290 μA for
the run and stop modes, respectively.

5.6.1.3 StandbyMode
HAL library functions related to the standby mode are as follows. The function
HAL_PWR_EnterSTANDBYMode can be used to enter the standby mode. The function
HAL_PWR_EnableWakeUpPin can be used to enable the wake-up PINx function-
ality. The macro __HAL_PWR_CLEAR_FLAG should be used to clear the flag if it
will be used in the wake-up process for the standby mode. We provide detailed
information on these functions next.

void HAL_PWR_EnterSTANDBYMode (void)

void HAL_PWR_EnableWakeUpPin (uint32_t WakeUpPinx)
/*
WakeUpPinx: Specifies which Wake-Up pin to enable. This

parameter can only be PWR_WAKEUP_PIN1.
*/

__HAL_PWR_CLEAR_FLAG (_FLAG_)
/*
__FLAG__: specifies the flag to clear. This parameter can be one

of the PWR_FLAG_WU or PWR_FLAG_SB
*/

We next provide an example on the usage of standby mode. Here we wake up
the CPU with the onboard button connected to PA0, toggle the onboard LEDs
connected to pins PG13 and PG14, and then put CPU back to standby mode. To do
so, the reader should first create an empty project and configure the LED pins of the
STM32F4 microcontroller as output. Then, he or she should configure the button
pin as SYS_WKUP and select the mode as “external interrupt mode with falling
edge trigger detection.” Then, the reader should use the code block in Listing 5.9
and run the project.

Listing 5.9 A sample code for the usage of standby mode functions, in C language

/* USER CODE BEGIN 2 */
HAL_GPIO_TogglePin(GPIOG,GPIO_PIN_13);
HAL_Delay(1000);
HAL_GPIO_TogglePin(GPIOG,GPIO_PIN_14);
HAL_Delay(1000);

__HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1);
HAL_PWR_EnterSTANDBYMode();
/* USER CODE END 2 */

As the project is executed, the green and red LEDs turn on one after the other
with 1 s delay. Then, they turn off together. However, we do not turn off the LEDs
in code. Instead, they turn off since the GPIO ports connected to them are closed.
As the CPU turns on after the standby mode, it resets itself. Hence, the LEDs turn
on and off again.
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We can analyze the power consumption of the modified project by the PCC tool.
Here, the GPIOA and GPIOG ports are enabled. The power scale is set to “Scale-3-
Low,” memory fetch type to “Flash,” and CPU frequency to “25 MHz” for the run
mode. Also the clock configuration is set to ALL CLOCKS OFF for the standby
mode. Under these conditions, the average current consumption will be 11.1 mA
and 2.2 μA for the run and standby modes, respectively.

5.6.2 Power Modes in C++ Language

The recent Mbed release only has one function sleep() related to sleep modes and
power management operations. Therefore, there is not much we can do to adjust the
power modes manually. Instead, we should depend on the sleep() function for this
operation. We direct the reader to the Mbed web site for further information on this
topic.

We provide a sample code on the usage of the sleep() function in Listing 5.10.
This code works as follows. Device settings for the red and green LEDs on the
STM32F4 board are done first. Then, interrupt settings for the user button are done.
The green LED toggles within the callback function. The red LED toggles within the
infinite loop under the main function. The sleep() function is also in the infinite
loop. Therefore, in the first run, the red LED toggles and CPU goes to sleep waiting
for a GPIO interrupt. As the user presses the button on the STM32F4 board, the CPU
wakes up and toggles the green LED. Afterward, the CPU goes to thread mode and
toggles the red LED and sleeps again. This example shows how the sleep mode can
be used under Mbed in its basic sense.

Listing 5.10 A sample code for the usage of sleep mode, in C++ language

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
InterruptIn userButton(BUTTON1);

void getButtons(){
greenLED = !greenLED;
}

int main()
{
greenLED=0;
redLED = 0;
userButton.fall(&getButtons);
__enable_irq();

while (true)
{
redLED = !redLED;
sleep();
}

}
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5.6.3 Power Modes in MicroPython

MicroPython supports active, sleep, stop, and standby power modes. These can be
used by their dedicated functions as follows. The function pyb.wfi() puts the CPU
in sleep mode. The CPU turns back to run mode again when any internal or external
interrupt occurs. The SysTick interrupt occurs every 1 ms in MicroPython. Hence,
the CPU can be kept in this mode with the maximum duration of 1 ms. The function
pyb.stop() puts the CPU in stop mode. The CPU returns to run mode again when
any external interrupt or RTC event occurs. The function pyb.standby() puts the
CPU in standby mode. The CPU resets itself when any external wake-up or tamper
interrupt, or RTC event, occurs.

Now, we will repeat the examples given in Sect. 5.6.1 using MicroPython.
First, we will redo the example in Listing 5.7 for observing the sleep mode.
MicroPython uses SysTick interrupt in background. Hence, it must be disabled with
code line stm.mem32[0xE000E010] &= ~1. The code for this example is given in
Listing 5.11.

Listing 5.11 A sample code for the usage of MicroPython sleep mode function

import pyb
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
counter2 = 0

def getButtons(id):
global counter2
if id == 0:

greenLED.value(not greenLED.value())
redLED.value(not redLED.value())
counter2 = counter2 + 1

def main():
counter1 = 0
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
greenLED.value(1)
redLED.value(0)
stm.mem32[0xE000E010] &= ~1
while True:

counter1 = counter1 + 1
print(counter1)
pyb.wfi()

main()

Next, we will repeat the example given in Listing 5.8 for observing the stop
mode. The MicroPython code for this example is given in Listing 5.12.

Listing 5.12 A sample code for the usage of MicroPython stop mode function

import pyb
import stm
counter2 = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
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def getButtons(id):
global counter2
if id == 0:

greenLED.value(not greenLED.value())
redLED.value(not redLED.value())
counter2 = counter2 + 1

def main():
counter1 = 0
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
greenLED.value(1)
redLED.value(0)
stm.mem32[0xE000E010] &= ~1
while True:

counter1 = counter1 + 1
print(counter1)
pyb.stop()

main()

Finally, we will repeat the example in Listing 5.9 for observing the standby mode.
Here, we need to add two code lines stm.mem32[stm.PWR + stm.PWR_CR] |=
(1«2) and stm.mem32[stm.PWR + stm.PWR_CSR] |= (1«8) to clear the wake-
up flag and enable wake-up property for pin PA0, respectively. The code for this
example is given in Listing 5.13.

Listing 5.13 A sample code for the usage of MicroPython standby mode function

import pyb
import stm
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)

def main():
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)
greenLED.value(1)
pyb.delay(2000)
redLED.value(1)
pyb.delay(2000)
stm.mem32[stm.PWR + stm.PWR_CR] |= (1 << 2)
stm.mem32[stm.PWR + stm.PWR_CSR] |= (1 << 8)
while True:

pyb.standby()

main()

5.7 Application: Interrupt-Based Operations and Power
Management for the Robot Vacuum Cleaner

In this chapter, we update the digital IO operations introduced in Chap. 4 using
interrupts and power modes. Hence, we benefit from the advanced features for our
robot vacuum cleaner. We provided the equipment list, circuit diagram, detailed
explanation of design specifications, and peripheral unit settings in a separate
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document in the folder "Chapter5\EoC_applications" of the accompanying
supplementary material. In the same folder, we also provided the complete C, C++,
and MicroPython codes for the application.

5.8 Summary of the Chapter

This chapter focused on two important embedded system concepts as interrupts and
low power modes. We handled them in the same chapter since the latter becomes
more useful with the usage of the former. The interrupt concept may seem unusual to
a programmer at first sight. However, it is a must for an embedded system designer.
Therefore, we considered the interrupt concept in detail starting from its conceptual
explanation to its usage in the STM32F4 microcontroller. Here, we only used GPIO
interrupts since digital input and output has been introduced in the previous chapter.
We will handle the remaining interrupts as we introduce other peripheral units in
the following chapters. As for low power modes, we started explaining them by a
general introduction to the battery as power supply. Then, we explored the power
management and low power mode operations in embedded systems. As the end of
chapter application, we extended our application introduced in the previous chapter
by adding interrupt and low power mode usage to it. We will be extensively using
interrupt-based programming and low power modes from this point on. Therefore,
the concepts introduced in this chapter are extremely important. Hence, we kindly
ask the reader to master them.

Problems

5.1. What is the difference between ISR and callback function?

5.2. What is the difference between the interrupt and event in the STM32F4
microcontroller?

5.3. Explain the usage area of the edge detection module in Fig. 5.2.

5.4. Can we eliminate switch bouncing problem by an interrupt-based setup?

5.5. There are two push buttons connected to pins PB0 and PB1 of the STM32F4
board. Set up the interrupt and associated callback function to count the number of
button presses. If the first button is pressed more than the second button, then only
the red LED on the STM32F4 board turns on. If the second button is pressed more
than the first button, then only the green LED on the STM32F4 board turns on. If
both buttons are pressed equally, then both LEDs turn on. Form the project using:
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(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

5.6. Repeat Problem 4.8 such that the parity check is done when the user button
on the STM32F4 board is pressed and a port interrupt is generated. Hence, form a
callback function for the operation.

5.7. Repeat Problem 4.9 such that each array entry will be processed by a button
press on the STM32F4 board. Hence, each array entry will be handled in a callback
function associated with the port interrupt.

5.8. Repeat Problem 4.11 by using port interrupts and associated callback func-
tions.

5.9. Repeat Problem 4.12 by using port interrupts and associated callback func-
tions.

5.10. We will implement an IoT system that uses the STM32F4 microcontroller
and analog temperature sensor. The sensor is connected to the ADC1 module of the
STM32F4 microcontroller. The system will wake up from the standby mode and
measure ambient temperature every minute. Assume that the system needs 20 ms
to initialize; measure the temperature in 100 ms; and save the result to SRAM in
5 ms. Moreover, assume that the STM32F4 microcontroller draws 10 mA and 3 μA
current in active (run) and standby modes, respectively. The sensor draws 1 mA
and 1 μA current in active (run) and standby modes, respectively. The system will
be supplied by two AAA alkaline batteries connected in series. Each battery has
capacity 1250 mAh. Calculate how long can the system work in this setup by:

(a) hand.
(b) the STM32CubeIDE PCC tool.
(c) Compare the results in part (a) and (b).

5.11. What are the power supply options for the STM32F4 microcontroller?

5.12. Add power management option to Problem 5.5 such that the STM32F4
microcontroller waits in an appropriate low power mode when not used.

5.13. Add power management option to Problem 5.6 such that the STM32F4
microcontroller waits in an appropriate low power mode when not used.

5.14. Add power management option to Problem 5.7 such that the STM32F4
microcontroller waits in an appropriate low power mode when not used.



References 111

References

1. STMicroelectronics: STM32F427xx STM32F429xx, docid024030 rev 10th edn. (2018)
2. STMicroelectronics: STM32F405/415, STM32F407/417, STM32F427/437 and

STM32F429/439 advanced Arm-based 32-bit MCUs, rm0090 rev 19th edn. (2021)
3. Yiu, J.: The Definitive Guide to Arm Cortex-M3 and Cortex-M4 Processors, 3rd edn. Newnes,

London (2014)



6Timing Operations

6.1 Clock Signals in Embedded Systems

In order to understand time-based operations, we should first understand the clock
signal and oscillator used to generate it. Therefore, we will start with these in this
section. Afterward, we will focus on clock signals in the STM32F4 microcontroller.

6.1.1 What Is a Clock Signal?

Clock is basically a periodic signal oscillating between high and low states with
predefined frequency (specifically called clock frequency). A sample clock signal is
given in Fig. 6.1. Voltage levels for the high and low clock states can differ between
different embedded systems. These voltage levels are not the main focus of this book
since we do not deal with the low-level hardware design of an embedded system.
However, the clock frequency has utmost importance since it defines the speed of
operations within the embedded system.

We should answer one fundamental question before going further. Why does an
embedded system (such as microcontroller) need a clock signal? In order to answer
this question properly, we should understand the basic structure of an embedded
system. Let’s focus on a microcontroller consisting of large number of logic gates.
Through these, data transfer and basic operations are performed. A logic gate is
formed by transistors with limited operation speed. Hence, there are times in which
the logic gate is in undefined state such that it neither represents logic level 0 nor
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Fig. 6.1 A sample clock
signal

Fig. 6.2 Basic Schmitt
trigger RC oscillator

1. A synchronization signal is needed to avoid these undefined states. Clock signal
is used for this purpose such that at its each rising (or falling) edge, operations
are performed. No operation is done between rising (or falling) edges of the clock
signal. Hence, undefined states in logic gates are avoided. As a result, all operations
within the microcontroller are done synchronously.

6.1.2 Oscillator as the Clock Signal Source

Oscillator is an electronic circuit producing a periodic square wave which is the
clock signal for our case. Therefore, an embedded system that needs a clock signal
should have an oscillator or oscillators. An oscillator can be described by its two
properties as accuracy and response time. Accuracy indicates how precise is the
clock signal frequency. Response time indicates the time needed for the oscillator
to stabilize such that it can generate the clock signal with the desired frequency.

There are mainly two oscillator types as resistive-capacitive (RC) and crystal.
A basic Schmitt trigger RC oscillator is given in Fig. 6.2. Here, frequency of the
clock signal is determined by the R and C component values. Working principle of
the RC oscillator is briefly as follows. The Schmitt trigger output goes to high level
when the capacitor is charged. It goes to low level when the capacitor is discharged.
Hence, the desired periodic clock signal can be produced. RC oscillators are mainly
used as internal oscillators in microcontrollers since their components can be added
to the hardware production process. Therefore, there is no additional component
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Fig. 6.3 A crystal oscillator

needed while using them. Besides, RC oscillators are cheap and have fast response
time. However, their accuracy is low because of the passive components used in
constructing the oscillator. Moreover, the accuracy can be affected from changing
temperature and supply voltage values.

A crystal oscillator circuit is given in Fig. 6.3. Here, frequency of the clock signal
is determined by the crystal which is a filter passing only signals with specific
frequency. When the crystal oscillator is used, components other than the crystal
and capacitors are placed within the microcontroller. However, the crystal cannot
be placed inside the microcontroller. Therefore, it should be added to the system as
an external unit. Crystal oscillators have relatively low response time. On the other
hand, accuracy of crystal oscillators is superior compared to RC oscillators.

Let’s focus on Fig. 6.3. In this figure, Q is the quartz crystal which is the main
component of the oscillator. In simplest terms, the quartz crystal is represented by
an RLC circuit with a parallel capacitor added to it. This setup leads to a frequency
range that can be generated. Afterward, the exact clock signal frequency can be
determined by the load capacitance value obtained by external capacitors CL1,
CL2, and the stray capacitance Cs (not shown in the figure). The inverter circuit
represented by the NOT gate in the figure aims to generate a phase shift. Hence,
oscillation within the circuit can be generated. The feedback resistor RF , connected
in parallel to the inverter, ensures the oscillator to work in linear region.



116 6 Timing Operations

Fig. 6.4 The STM32F4 microcontroller clock tree

6.1.3 Managing Clocks in the STM32F4Microcontroller

The STM32F4 microcontroller has several clocks and clock signal sources. The
reason for this is as follows. When more than one time-based operation is performed
within the microcontroller, clocks working with different frequencies may be
needed. In such operations, when one desired frequency is low, the other may be
high. Therefore, different clocks should be used.

Block diagram of the clock tree for the STM32F4 microcontroller, obtained from
STM32CubeMX, is given in Fig. 6.4. As can be seen in this figure, all clocks used
in the microcontroller can be derived from LSI, LSE, HSI, and HSE clocks. We
explain them in detail next.

The STM32F4 microcontroller has two low speed clocks as LSI and LSE. LSI is
the low speed internal clock generated from an internal 32 kHz RC oscillator. LSE
is the low-speed external clock. There are two ways to generate it. The first one is
connecting an external 32768 Hz crystal to the OSC32_IN and OSC32_OUT pins
of the STM32 microcontroller. The second way is connecting an external clock to
the OSC32_IN pin of the STM32F4 microcontroller. Here, the OSC32_OUT pin
should be left at high impedance. In this setup, the clock frequency can be selected
between 0 and 1000 kHz. Unfortunately, the STM32F4 board does not have an LSE
crystal. Therefore, the second way cannot be used in this book.
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Fig. 6.5 “RCC mode and
configuration” window

The STM32F4 microcontroller has two high speed clocks as HSI and HSE. HSI
is the high-speed internal clock generated from an internal 16 MHz RC oscillator.
HSE is the high-speed external clock. There are two ways to generate it. The first
one is connecting an external crystal to the OSC_IN and OSC_OUT pins of the
STM32F4 microcontroller. This way, the clock frequency can be set between 4
and 26 MHz. The second way is connecting an external clock to the OSC_IN pin
of the STM32F4 microcontroller. Here, the OSC_OUT pin should be left at high
impedance. In this setup, the clock frequency can be set between 1 and 50 MHz.
The STM32F4 board has an onboard 8 MHz HSE crystal.

Low- and high-speed clocks introduced in the previous paragraphs can be
selected from STM32CubeMX. To do so, the reader should select the RCC
module from the “System Core” drop-down menu. The opened “RCC Mode and
Configuration” window will be as in Fig. 6.5. Here, HSE and LSE clock sources can
be selected as “Disable,” “BYPASS clock source,” or “Crystal/Ceramic Resonator”
from the related drop-down list. Also, two clock signals can be directed to output
pins by selecting “Master Clock Output 1” and “Master Clock Output 2” boxes.
Master clock output 1 signal can be fed by the LSE, HSE, HSI, or main PLL
clock. Master clock output 2 signal can be fed by the SYSCLK, PLLI2S clock,
HSE, or main PLL clock. Selected clock source frequencies can be divided by their
prescalers.

Other clocks used inside the STM32F4 microcontroller are as follows. The
IWDG clock is used by independent watchdog timer and fed by the LSI clock.
RTC clock is used by real-time clock module and fed by either the LSI, LSE, or
scaled HSE clock. I2S clock is used by inter-IC sound peripheral unit and fed by
either the PLLI2S or external I2S_CKIN pin. Here, PLLI2S can be fed by the HSI
or HSE clock. SAI clocks are used by the synchronous audio interface peripheral
unit and fed by either the PLLSAI, PLLI2S, or I2S_CKIN pin. Here, PLLSAI can
be fed by the HSI or HSE clock. LCD-TFT clock is used by the LCD-TFT controller
module and fed by PLLSAI. SYSCLK is the system clock. Hence, all clocks used
inside the microcontroller, except the ones mentioned before, are derived from it.
SYSCLK can be fed by the HSI, HSE, or main PLL. Its maximum frequency can
be set to 180 MHz. Here, the main PLL can be fed by the HSI or HSE clock. HCLK
is the processor clock used by CPU core, advanced high-performance bus (AHB),
memory, and DMA. Its maximum frequency can be set to 180 MHz. HCLK is a
gated clock which means it can be enabled or disabled by a control bit. FCLK
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is the free-running processor clock. This means it is not gated. In other words,
it cannot be stopped by a control bit. FCLK continues to run in the background
even if the CPU goes to sleep mode. Hence, it can control interrupts and events
during this time. FCLK is also used for sampling interrupts and clocking debug
blocks. It is synchronous to HCLK. PCLK1 is the low-speed advanced peripheral
bus (APB1) clock. Its maximum frequency can be set to 45 MHz. APB1 timers
use double PCLK1 frequency. PCLK2 is the high-speed advanced peripheral bus
(APB2) clock. Its maximum frequency can be set to 90 MHz. APB2 timers use
double PCLK2 frequency.

All prescalers used in the clock tree are actually frequency dividers. These are
constructed using cascaded flip-flops. In operation, the input frequency is divided
by two after each flip-flop. Hence, we can obtain f/2, f/4, f/8, · · · , frequency valued
clock signals with this setup. For more information on frequency dividers by flip-
flops, please see [2].

Although we are free to choose the mentioned clock sources, the best option
is leaving them to be set by STM32CubeMX. Hence, we can benefit from the
automatic clock configuration option there. When one of the HCLK, FCLK,
PCLK1, PCLK2, or system timer clock frequencies is entered to the related box
in STM32CubeMX, all other clocks and PLL blocks are configured automatically
if possible. Otherwise, STM32CubeMX warns the user as “No solution found using
the current selected sources. Do you want to use other sources?” The reader can
change the clock source and repeat the process. If no clock source can provide the
desired frequency, then a different value should be selected.

6.2 Timers in Embedded Systems

The clock signals are fed to timer modules for time-based operations. Therefore,
we will introduce timers in this section. Different embedded systems may have
timer modules with different operating characteristics. Hence, we will only focus
on timers in the STM32F4 microcontroller in this section. The reader should also
pay attention to the plural usage of the timers. This indicates that there is more than
one timer module in the microcontroller. We will explain why this is the case.

6.2.1 What Is a Timer?

Timer is basically a counter such that the count value changes (going up, down, or
up and down) by a trigger. If we pick the trigger to be the rising or falling edge of a
periodic clock signal, then the count value changes based on the clock. This way, we
can determine the actual time within our application running on the microcontroller.
Let’s provide an example for this operation.

Assume that period of the clock signal fed to the timer module is 1/fT imer s.
We set the timer module to count up starting from zero. Assume further that the
count reaches the value (N − 1) at a specific time instant. Hence, we can deduce
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Fig. 6.6 A basic timer
module

that the time passed between the start of the operation and specific time instant is
N/fT imer s. As can be seen in this example, we can deduce the actual time value
by the help of the timer module. This allows performing time-based operations such
as creating specific time intervals, periodically obtaining data, measuring the time
duration between two events, or creating time related output by the microcontroller.

We can also use the prescaler, basically a frequency divider, to change period
of the clock signal fed to the timer module. This allows us to obtain different time
values by the same clock signal. We provide a basic timer block composed of the
prescaler and counter in Fig. 6.6. In this figure, fCLK represents the frequency of
the clock signal fed to the timer module. This signal is modified by the prescaler
such that the new clock signal has frequency fT imer .

We next provide the actual usage example of the timer module. We know that
the counter within the timer changes its value at every 1/fT imer s. Let’s create a
10 s time interval using the clock signal with 180 MHz fCLK frequency. We should
count 1800 million clock signal edges to obtain the 10 s time interval unless we use
the prescaler. Instead, we can divide fCLK by 18000. Hence, we can obtain the 10 s
time interval by counting 100000 clock signal edges with frequency fT imer .

The timer module works independent of the CPU. Therefore, the CPU does not
allocate its resources to determine the required time instant. We can benefit from
timer interrupts such that separately working CPU and timer module can achieve a
time-based operation. Let’s provide a simple example for this case. Assume that we
want to toggle an LED every second. The timer module can perform the counting
process to reach 1 s in background without interfering the CPU. As the toggling
time is reached, the timer module generates an interrupt and the related callback
function is executed by the CPU to toggle the LED. The CPU can perform other
tasks assigned to it except the callback function execution period. Therefore, the
CPU does not dissipate its valuable resources to the time calculation process.

6.2.2 Introducing Timers in the STM32F4Microcontroller

The STM32F4 microcontroller has four different timer types as base, watchdog,
system timer (SysTick), and real-time clock (RTC). These are used for specific
purposes. The base and system timer modules can be used for general time related
operations. The watchdog timer can be used for resetting the CPU when an error
halts code execution. The RTC can be used for determining the exact date and time.
Hence, specific actions can be taken based on this information. We will explain each
timer type in detail next.
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Fig. 6.7 Base timer trigger and clock controller block

6.2.3 Base Timers in the STM32F4Microcontroller

There are 14 base timers in the STM32F4 microcontroller. These are called TIM1,
TIM2, · · · , TIM14. All of these timers share similar properties. Hence, we will
explain how they work based on one such timer. Then, we will summarize their
differences in Sect. 6.2.3.6. The STM32F4 microcontroller base timer consists of
four blocks as trigger and clock controller, counter, input capture, and output
compare. Let’s look at these blocks in detail.

6.2.3.1 Trigger and Clock Controller Block
The trigger and clock controller block in the base timer is used to start/stop, reset,
or update the timer counter using one of the trigger inputs. This block is given in
Fig. 6.7. The trigger source can be the internal clock signal CK_INT, external clock
signal ETR, timer signals TI1FP1 or TI2FP2, or internal trigger signals ITR0-3. The
internal clock, CK_INT, is actually the PCLKx signal obtained from the STM32F4
microcontroller clock tree. The external clock, ETR, is the signal obtained from the
pin TIMx_ETR. Other inputs and properties of the trigger and clock controller block
will be explained in Sect. 6.2.7.

6.2.3.2 The Counter Block
The counter block of the base timer is given in Fig. 6.8. Here, the internal clock
signal, CK_PSC, is divided by the 16-bit prescaler first to obtain the counter clock,
CK_CNT. In every clock edge, content of the counter register, CNT counter, is
updated according to the selected counting mode to be explained next.
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Fig. 6.8 Base timer counter block

6.2.3.3 CountingModes
There are five counting modes in the STM32F4 microcontroller base timers. These
are up mode, down mode, center aligned mode 1, center aligned mode 2, and center
aligned mode 3.

In the up mode, the CNT counter is increased by one at every CK_CNT edge.
When the CNT counter reaches the value in the auto-reload register ARR, the CNT
counter is reset. The counter overflow event is generated. Then, up counting restarts
from zero again.

In the down mode, the CNT counter is decreased by one at every CK_CNT
edge. When the CNT counter reaches zero, the CNT counter is reset. The counter
underflow event is generated. Then, down counting restarts from the ARR value
again.

In the center aligned modes, the CNT counter is increased from zero to the ARR
value. As this value is reached, the counter overflow event is generated. Then, the
CNT counter is decreased from the ARR value to zero. The counter overflow event
is generated again. The difference between the three center aligned modes occurs
while generating output compare interrupt flags. In center aligned mode 1, the flag
is generated when the counter is counting down. In center aligned mode 2, the flag
is generated when the counter is counting up. In center aligned mode 3, the flag is
generated when the counter is counting up or down.

The base timer has a repetition counter which can be used in all mentioned
counting modes. If the repetition counter value is set to zero (as the default case), the
counter generates an update event at every overflow or underflow. If the repetition
counter is set to a value different from zero, then the overflow or underflow decreases
the set value by one. When the repetition counter reaches zero, an update event is
generated. The repetition counter is reset to its initial value and the operation repeats
again. This allows increasing the period of update event generation.

The counter block also has an auto-reload preload mechanism related to counting
modes. When this property is enabled and the ARR value is changed on the run, the
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Fig. 6.9 Base timer input capture block

counter block continues to run according to the old ARR value. The new value is
written to ARR when an update event is generated.

6.2.3.4 The Input Capture Block
The input capture block in the base timer is used to copy the value inside the counter
register to the capture/compare register when the selected input signal transition is
detected. This transition can be low to high (rising edge), high to low (falling edge),
or both (rising and falling edges). The input signal should be connected to the related
timer channel (tabulated in Table 6.1) as well. Hence, we can measure period of a
signal by using the capture mode with rising or falling edges, pulse duration of a
signal by using capture mode with both edges, or duration of an operation (e.g.,
time between pressing and releasing a button) using different capture modes.

The input capture block is given in Fig. 6.9. Here, the signal coming from the pin
TIx can be filtered first to remove unwanted noise. Then, polarity of the selected
input signal can be set using the edge detection and polarity selector blocks. The
signal edge to perform the capture operation can be selected as rising, falling, or
both edges. Then, the divider block is used to decide the number of signal edges
to perform the capture event. This allows making more robust measurements under
noise.

The input capture mode has three options as input capture direct, input capture
indirect, and input capture triggered by TRC. The input capture direct mode is used
to perform input capture from a signal (more precisely, the input signal) connected
to its own channel. The input capture indirect mode is used to perform input capture
from a signal connected to its complementary channel. For channel1, this is the
signal coming from channel2. Hence, channel2 must be set to input capture direct
mode to use this mode. Finally, input capture triggered by the TRC mode is used to
perform input capture from a signal connected to its selected ITRx signal if slave
mode is selected. The combined channels option is used to perform special input
capture modes to read encoders, hall sensors, or pulse width modulation (PWM)
inputs. We will not consider these modes in this book. Please see [1] for further
information on them.
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Table 6.1 Input signals for
each channel

Channel Input 1 Input 2 Input 3

Channel 1 MC pin 1 MC pin 2 TRC signal

Channel 2 MC pin 2 MC pin 1 TRC signal

Channel 3 MC pin 3 MC pin 4 TRC signal

Channel 4 MC pin 4 MC pin 3 TRC signal

We should also mention the valid input signals for each channel. Each channel of
a base timer has three inputs. We tabulate them in Table 6.1. In this table, MC pins
1 to 4 stand for the microcontroller pins connected to channels 1 to 4, respectively.
TRCs signal stands for one of the internal trigger signals (ITRx).

When the direct mode is selected in the input capture mode, each channel
performs the capture operation from its own pin. As an example, when channel 1 is
selected, the capture operation is done from the input signal coming from MC pin 1
as in Table 6.1. This is the standard input capture operation. Assume that we want
to measure frequency of a PWM signal (to be introduced in Chap. 7). We connect it
as an input signal to channel 1 MC pin 1 and perform the capture operation to make
measurements and calculate the frequency value accordingly.

When the indirect mode is selected in the input capture mode, each channel
performs the capture operation from its other pin. As an example, when channel 1
is selected, the capture operation is done from the input signal coming from MC pin
2 as in Table 6.1. This allows measuring different time values for the same signal.
The best example for this scenario is measuring the frequency and duty cycle of a
PWM signal. One way of doing this is feeding this signal to the two pins connected
to two different channels and measuring frequency and duty cycle separately. The
input capture indirect mode allows using one pin and performs calculations. For our
example, we can feed the PWM signal to MC pin 1 for channel 1 and select the
input capture mode. We can measure frequency of the signal this way. At the same
time, we can select the input capture indirect mode for channel 2 and use MC pin 1
again. We can measure duty cycle of the signal this way. Hence, we use one pin for
two different measurements.

The input capture block can also generate an interrupt as follows. When the
selected edge type is detected, the value inside the counter register is copied to
the capture/compare register. Capture/compare interrupt flag (CCxIF) is set and an
interrupt is generated. As a side note, the capture/compare interrupt should have
been enabled beforehand.

6.2.3.5 The Output Compare Block
The output compare block in the base timer is used for comparing the value inside
the counter register with the capture/compare register. When both values are equal,
transition of the output signal can be changed or an update event can be generated.
Hence, we can generate the desired output signal with specific frequency and pulse
duration. We can also use this block to generate update events at specific time
instants without generating an output signal.

7
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Fig. 6.10 Base timer output compare block

The output compare block of the base timer is given in Fig. 6.10. The output
signal OCy is set, reset, or toggled when the value in the counter register equals the
value written to the capture/compare register. Then, the capture/compare interrupt
flag (CCxIF) is set and an interrupt is generated if the capture/compare interrupt has
been enabled beforehand. OCyN, as the complementary signal of OCy, can also be
generated. We will use this block while generating the PWM signal in Chap. 7.

The user can select one of the four output compare modes as output compare
no output, output compare CHx, output compare CHxN, and output compare CHx
CHxN. The output compare no output mode allows using the output compare mode
for internal timing purposes without creating any output signal. The output compare
CHx mode creates output signal at the related pin. The output compare CHxN mode
creates a complementary output signal from the related pin. The output compare
CHx CHxN mode creates two output signals as CHx and CHxN. PWM or forced
output signals can be generated from related pins using suitable output compare
selections. We will explore these options further in Chap. 7.

6.2.3.6 Summary of the STM32F4Microcontroller Base Timers
The STM32F4 microcontroller has 14 base timers as mentioned before. We tabulate
their properties in Table 6.2. In this table, resolution indicates how many bits does
the timer counter has. The higher the number of bits, the better the resolution of the
timer.

As can be seen in Table 6.2, TIM6 and TIM7 have no capture/compare channels.
Therefore, they are mainly used for triggering the DAC module or basic time
operations with 16-bit counter. TIM1 and TIM8 are advanced control timers with
complementary output. Hence, they can be used for generating three phase PWM
signals with programmable inserted dead times. They also have all features of
complete general-purpose timers. TIM2 and TIM5 have 32-bit counters. TIM3 and
TIM4 have 16-bit counters. These four timers have four independent channels with
full capture/compare modes. TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
have 16-bit counters. However, they can be only used in up mode. TIM9 and
TIM12 have two capture/compare channels. The remaining timers have only one
such channel.

7
7
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Table 6.2 Summary of the STM32F4 microcontroller base timers

Resolution Prescaler Capture/compare Max. timer
Timer (bits) Mode (bits) channels clock (MHz)

TIM1, TIM8 16 Up, down, center aligned 16 4 180

TIM2, TIM5 32 Up, down, center aligned 16 4 90

TIM3, TIM4 16 Up, down, center aligned 16 4 90

TIM6, TIM7 16 Up 16 0 90

TIM9 16 Up 16 2 180

TIM10, TIM11 16 Up 16 1 180

TIM12 16 Up 16 2 90

TIM13, TIM14 16 Up 16 0 90

6.2.4 System Timer in the STM32F4Microcontroller

System timer, also called SysTick, is mainly used by the real-time operating system
(RTOS). However, it can also be used as a dedicated timer. Since SysTick is
extensively used by RTOS, it is fed by the main system clock. This clock can be
divided by 1 or 8 according to the prescaler selection. SysTick has a 24-bit down-
counter to create 1 ms time intervals.

6.2.5 Watchdog Timers in the STM32F4Microcontroller

A software failure can create an infinite loop and halt code execution within
the microcontroller. Resetting the CPU is the best option to recover from such
situations. Watchdog is a special timer which resets the CPU if its counter counts
to zero from its initial value (called timeout). The counter must be reloaded by a
code to prevent the reset operation. If the code cannot be executed until the reload
operation, the watchdog timer resets the CPU.

There are two different watchdog timers in the STM32F4 microcontroller. These
are the independent watchdog (IWDG) and window watchdog (WWDG). IWDG is
a classic watchdog timer as given in Fig. 6.11. It can be seen that it is clocked from
the 32 kHz LSI RC oscillator. This means that IWDG does not depend on the main
system clock and can operate in standby and stop modes. IWDG also has an 8-bit
prescaler to divide this clock further.

All operations within the IWDG are controlled by its key register. We can start the
IWDG by writing 0xCCCC to it. Initially, the watchdog counter is set to its maximum
value, 0x0FFF. As the operation starts, this counter value decreases by one at every
clock edge. If 0xAAAA is written to the key register before the count value reaches
zero, then we kick the dog. Hence, the watchdog counter can be set to a new value
and it restarts counting down from it. If we do not kick the dog, then the IWDG
resets the CPU as the watchdog counter reaches zero.
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Fig. 6.11 IWDG block diagram

The WWDG does not have a key register as in IWDG. Instead, kicking the dog
is done by writing a new value to its count register before timeout. In other words,
the WWDG has a 7-bit counter which counts down starting from 127 at every clock
edge. When this counter reaches 63, the CPU is reset by WWDG. Hence, this is
the timeout value. We should kick the dog before the counter reaches this value.
Therefore, we should write a new value to the counter before it reaches 63. In this
case, the CPU is not reset and the counter restarts counting down from the new
entered value. The WWDG is fed by the main system clock which is divided by
4096 initially. The clock frequency can be divided further by its prescaler.

The WWDG also has a window property. Hence, there is a window register which
keeps a value between 127 and 63. During down counting of the WWDG counter,
kicking the dog should be performed between the window register value and 63. In
this setting, the CPU is not reset. If kicking the dog is not done within the mentioned
time duration, then the CPU is reset by the WWDG. As a side note, IWDG resets
the CPU after a predefined time. On the other hand, the WWDG resets the CPU if
it is not kicked before predefined time is elapsed or it is kicked before the window
value is reached. This has the following advantage. While using the IWDG, a bug
may happen in a loop consisting of the watchdog reset line. As a result, the CPU
stays within the loop but not resetting the CPU. When we use WWDG for such a
scenario, the reset request will be done early, and the CPU understands that there is
a problem in the code.

Both IWDG and WWDG can also be used as regular down counting timers. Since
the STM32F4 microcontroller has several timers, we will not explore this property
further. For more information on this property, please see [1].
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6.2.6 Real-Time Clock in the STM32F4Microcontroller

Real-time clock (RTC) is a unique binary coded decimal (BCD) timer which can run
independently as long as it is powered properly. It works even during reset operation
or under low power modes. It keeps track of the exact time as seconds, minutes,
hours (in 12- or 24-h format), day (day of the week), date (day of the month), month,
and year in two 32-bit registers in BCD format. The subseconds is also tracked
within the RTC and kept in another register. Daylight saving compensation can also
be configured in RTC through software.

RTC has 20 backup registers each being able to store 4 bytes. These keep
program-specific data after reset or shut down when the system is powered by
external battery. These registers are reset automatically if an unintended access to
the device is detected using tamper detection property.

RTC has two programmable alarms with interrupt generation property. These are
called Alarm A and B. These alarms can be used by enabling and setting a date to
them. The date of the alarm is kept in separate registers. Hence, these two alarms
work independent of each other. RTC also has an automatic wake-up property. It
can be used to wake the microcontroller up from a low power mode periodically
and perform desired actions. RTC has also an additional digital calibration feature to
compensate for any inaccuracy at the clock signal generated by the crystal oscillator.
For more information on this property, please see [1].

6.2.7 Advanced Base Timer Operations in the STM32F4
Microcontroller

We explained the trigger and clock controller block under base timers in Sect. 6.2.3.
As a reminder, this block can be used to start/stop, reset, or update the timer counter
using one of the trigger inputs. If the trigger input is selected as CK_INT or ETR,
the clock is fed from internal PCLKx signal or external TIMx_ETR. In this setting,
the base timer can be used alone.

The STM32F4 microcontroller allows using more than one base timer in master
and slave setup. To use the first base timer as slave, one of its internal trigger signals,
ITR0-3, should be selected as trigger input. The master base timer should create the
ITR signal as output. Hence, a link is created between the master and slave timers
through the ITR signal. As a result, the master timer controls operations in the slave
timer.

When a timer is selected as slave, it can be used in one of the four modes as
reset, gated, trigger, and external clock mode 1. In the reset mode, rising edge of the
selected trigger input (TRGI) resets the counter and content of the timer registers
is updated. In the gated mode, the counter clock is enabled when TRGI is high and
disabled when it is low. This means the counter is started or halted by the master
timer. In the trigger mode, the counter is started at the rising edge of the TRGI
signal. In the external clock mode 1, rising edges of the TRGI signal update the
counter according to the counter mode.



128 6 Timing Operations

Table 6.3 The STM32F4 microcontroller ITRx connections

Slave timer ITR0 ITR1 ITR2 ITR3

TIM1 TIM5_TRGO TIM2_TRGO TIM3_TRGO TIM4_TRGO

TIM2 TIM1_TRGO TIM8_TRGO TIM3_TRGO TIM4_TRGO

TIM3 TIM1_TRGO TIM2_TRGO TIM5_TRGO TIM4_TRGO

TIM4 TIM1_TRGO TIM2_TRGO TIM3_TRGO TIM8_TRGO

TIM5 TIM2_TRGO TIM3_TRGO TIM4_TRGO TIM8_TRGO

TIM8 TIM1_TRGO TIM2_TRGO TIM4_TRGO TIM5_TRGO

TIM9 TIM2_TRGO TIM3_TRGO TIM10_TRGO TIM11_TRGO

TIM12 TIM4_TRGO TIM5_TRGO TIM13_TRGO TIM14_TRGO

There are eight different modes to create a trigger output for the master
timer. These modes are reset, enable, update, compare pulse, OCREF1, OCREF2,
OCREF3, and OCREF4. In the reset mode, master and slave timers are reset at the
same time. In the enable mode, the counter enable signal is used as the trigger output
(TRGO) to start several timers at the same time. Hence, they can be synchronized. In
the update mode, the update event is selected as TRGO. In the compare pulse mode,
a positive pulse is fed to TRGO when the CC1IF flag is set. In OCREFx mode, the
OCxREF signal generated by the output compare mode is used as TRGO. These
trigger outputs can also be used to trigger other peripheral units such as ADC and
DAC.

When the master timer is used in the update mode and slave master is used in
external clock mode 1, slave counter is updated whenever an update event occurs
in the master timer. This way, we connect these two timers having a-bit and b-bit
counters in series and obtain one timer with (a+b)-bit counter. More than two timers
can also be connected this way and counters with higher bit numbers and larger
resolution can be obtained.

All ITRx signal connections for the STM32F4 microcontroller master and slave
timers are given in Table 6.3. This table indicates which of the two timer modules
can be used in master/slave form. As an example, if TIM1 is selected as slave,
only TIM5, TIM2, TIM3, or TIM4 can be used as master. To note here, we cannot
form a master/slave connection between any two timers. Table 6.3 also indicates
which signal should be fed to a selected slave timer. As a side note, each slave timer
has four trigger inputs as ITR0, ITR1, ITR2, and ITR3. For each timer, these are
connected to different master timers. Therefore, as we select a master timer, we
should select the connected trigger input for the slave timer accordingly.

6.3 Timer Setup in the STM32F4Microcontroller

We will explain how to initialize the clock and timer modules in this section. To do
so, we will consider C, C++, and MicroPython based operations. These will lead to
the usage of the clock and timer modules in Sect. 6.4.
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Fig. 6.12 TIMx mode and configuration window

6.3.1 Timer Setup via C Language

STM32CubeMX offers a detailed and visually instructive environment to set up and
initialize timer modules. Therefore, we will use it to set up the base timers, SysTick,
watchdog timers, and RTC.

6.3.1.1 Setting Up Base Timers
To set up base timers, go to the “Timers” drop-down menu in “Pinout and Configura-
tion” window and select the desired TIMx peripheral under STM32CubeMX. Open-
ing TIMx mode and configuration window will be as in Fig. 6.12. As mentioned
before, different base timers may have different properties and capture/compare
channels. Hence, this window may differ for the selected TIM peripheral. In the
opened TIMx mode and configuration window, as in Fig. 6.12, the user can select
the internal clock or ETR2 external clock from the “Clock Source” drop-down list
to use it for basic counter operations.

If we use the selected TIMx module in slave mode, we can choose external clock
mode 1, reset, gated, or triggered mode from the associated drop-down list. If the
slave mode is selected, external trigger source can be selected from the trigger
source drop-down list. Here, trigger outputs coming from other timers (ITRx),
channel 1 edge detection signal (TI1_ED), or filtered and synchronized external
timer input signals (TI1FP1 and TI2FP2) are valid options.

We can select the desired input capture or output compare properties from each
Channelx drop-down list. Within STM32CubeMX, the input capture mode has three
options as input capture direct, input capture indirect, or input capture triggered by
TRC. The user can select one of the four output compare modes as output compare
no output, output compare CHx, output compare CHxN, and output compare CHx
CHxN.
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Fig. 6.13 TIMx configuration window

Fig. 6.14 Additional input
capture parameters in TIMx
configuration window

When the basic counter or input capture mode is selected, the configuration
window will be as in Fig. 6.13. The user can set the Prescaler value for the
clock signal, Counter Period value for ARR register, Counter Mode, Internal
Clock Division for timer input filters, repetition counter (available for other timer
modules), and auto-reload preload property from the counter settings drop-down list
in the parameter settings subwindow. The user can also set master/slave mode and
trigger event selection for creating trigger output from the trigger output (TRGO)
parameters drop-down list.

When the input capture mode is selected, additional Input Capture Channel x
drop-down list will be opened as in Fig. 6.14. Here, the user can set the polarity to
select input signal edge type (whether from low to high or high to low), prescaler
division ratio to set number of edges to perform input capture, and input filter.

The base timer interrupts can be enabled from the NVIC settings window. Here,
all timer interrupts except for TIM1 and TIM8 can be enabled by selecting the
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TIMx global interrupt box. Different timer interrupts can be enabled separately
for TIM1 and TIM8. Update event interrupts are enabled by selecting the TIMx
update interrupt box. Capture/compare interrupts are enabled by selecting the TIMx
capture/compare interrupt box. Slave mode trigger interrupt is enabled by the TIMx
trigger and commutation interrupts.

6.3.1.2 Setting Up the System Timer
The system timer (SysTick) does not have a setup operation under STM32CubeMX.
The main reason is that it runs in background independently. The user can modify
only its related interrupt settings if it will be used. We will explain this option in
detail in Sect. 6.4.

6.3.1.3 Setting UpWatchdog Timers
STM32CubeMX can be used to set up watchdog timers in the STM32F4 micro-
controller. To do so, the user should go to the system core drop-down menu in the
“Pinout and Configuration” window under STM32CubeMX and select the IWDG or
WWDG peripheral. In the opening “Mode and Configuration” window, we should
tick the “activated” checkbox. The opening configuration window will be as in
Fig. 6.15 for IWDG. Here, IWDG counter clock prescaler is used to divide the
32 kHz LSI clock. The IWDG down-counter reload value is used to select the
timeout value. As an example, if we want 1 s timeout value, we can set the prescaler
to 16 and counter to 2000.

The opening configuration window will be as in Fig. 6.16 for WWDG. Here, the
WWDG counter clock prescaler is used to further divide PCLK1 which was divided
by 4096 beforehand. WWDG down-counter value is used to select the timeout value.
This value can be entered between 64 and 127 since the WWDG resets the system
when this counter goes below 64. The WWDG window value is used to set the
window value.

Fig. 6.15 IWDG configuration window
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Fig. 6.16 WWDG configuration window

Fig. 6.17 RTC mode and configuration window

6.3.1.4 Setting Up the RTC
We can use STM32CubeMX to initialize the RTC. To do so, the reader should go
to the Timers drop-down menu in the “Pinout & Configuration” window and select
the RTC. The opened window will be as in Fig. 6.17. Here, we should select the
“Activate Clock Source” to enable RTC. Afterward, we can enable the wake-up
property from the “WakeUp” drop-down list. Likewise, we can activate the calendar
by ticking the “Activate Calendar” checkbox. Finally, we can activate alarms from
“Alarm A” and “Alarm B” drop-down lists.
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Fig. 6.18 RTC configuration window

The configuration window for RTC will be as in Fig. 6.18. Within this window,
the reader can select the hour format as “Hourformat12” or “Hourformat24” within
the “General” drop-down list. We can use the asynchronous and synchronous
predivider values together to obtain 1 Hz clock from RTC. As a side note, the
asynchronous predivider value can be selected between 0 and 127. The synchronous
predivider value can be selected between 0 and 32767.

The reader can set the desired RTC time from the “Calendar Time” and “Calendar
Date” drop-down lists. Daylight saving adjustment can also be configured within
the “RTC configuration” window. Here, the options are “Daylightsaving None,”
“Daylightsaving Sub1h,” or “Daylightsaving Add1h”. The reader can set the desired
alarm time in the “Alarm” drop-down list. To do so, we should first enter the time
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of the alarm as hour, minute, second, and subsecond. Then, day of the alarm can be
selected by setting the “Alarm Date Week Day Sel” property. If “Date” is selected
here, “Alarm Date” can be between 1 and 31. If “Weekday” is selected here, “Alarm
Date” can be between “Monday” and “Sunday.”

If the wake-up property is enabled within the configuration window, it can be
modified from the “Wake Up” drop-down list. Here, wake-up clock is used which
can be obtained by dividing the RTC or it can be directly set to 1 Hz. The wake-up
counter can be used to set the desired wake-up interval.

RTC interrupts can be enabled from NVIC settings. Alarm interrupts can be
enabled by selecting RTC Alarm A and B interrupts through EXTI line 17 checkbox.
Wake-up interrupt is enabled by selecting RTC wake-up interrupt through EXTI line
22 checkbox.

6.3.2 Timer Setup via C++ Language

We can use Mbed to set up and use timers in the STM32F4 microcontroller in C++
language. Here, we have options for the base timers, watchdog timer, and RTC. We
will evaluate each module in detail next.

6.3.2.1 Setting Up Base Timers
The base timer can be used under Mbed by its three classes Timer, Timeout, and
Ticker. The timer class can be created by writing Timer TimerX. Here, TimerX
is the name of the created Timer class and can be named as desired. The timer class
is used to perform high-resolution counting operation by its 64-bit counter. It can be
started, stopped, reset, or read for measuring precise time durations.

The timeout class can be created by writing Timeout TimeoutX. Here,
TimeoutX is the name of the created Timeout class and can be named as desired.
The timeout class is used to generate an interrupt after a set delay time. This
interrupt is generated only once.

The ticker class can be created by writing Ticker TickerX. Here, TickerX is
the name of the created Ticker class and can be named as desired. The ticker class
is used to generate periodic interrupts at desired time intervals.

6.3.2.2 Setting Up theWatchdog Timer
Mbed has a Watchdog class to control the IWDG watchdog timer. There is only
one instance for the watchdog timer and can be used directly by Watchdog::
get_instance(). Or, this instance can be referenced as Watchdog &WatchdogX
= Watchdog:: get_instance(). Here, WatchdogX is the name of the reference
and can be named as desired. Then, this reference can be used throughout the code.

6.3.2.3 Setting Up the RTC
Mbed has no specific class to control RTC. Instead, RTC can be set to the desired
date using the function set_time(time_t t). Here, t is the number of seconds
since January 1, 1970, which is the universal UNIX timestamp. Instead of
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calculating this value to set the desired time, the function time_t mktime(tm
*timeptr) can be used. Through it, we can calculate the desired time value via
the standard date format. Here, the tm struct has members tm_year, tm_mon,
tm_mday, tm_hour, tm_min, and tm_sec. tm_year is the desired year and can be
entered as the desired year minus 1900. tm_mon is the desired month of the year
and can be entered between 0 and 11 to represent months January to December,
respectively. tm_mday is the desired day of the month and can be entered between
0 and 31. tm_hour, tm_min, and tm_sec represent hour, minute, and second of
the desired date. They can be entered between 0 and 23, 0 and 59, and 0 and 60,
respectively.

6.3.3 Timer Setup via MicroPython

We can use MicroPython to set up and use timers in the STM32F4 microcontroller
as well. Here, we have options for base timers, watchdog timer, and the RTC. We
will evaluate each module in detail next.

6.3.3.1 Setting Up Base Timers
MicroPython has the Timer class to perform base timer operations. The base timer is
created using the function pyb.Timer(id). Here, id represents the timer number.
As the base timer is created, it can be initialized by the function init(freq,
prescaler, period, mode, div). Here, freq is used to set the desired timer
frequency. The prescaler is used to divide the timer clock. period is used to
enter the period value. mode is used to select the counting mode as Timer.UP,
Timer.DOWN, or Timer.CENTER.

As the base timer is initialized, its capture/compare channel can be initialized
using the function channel(mode, pin). Here, mode is used to select the
capture/compare mode and can be one of Timer.PWM, Timer.PWM_INVERTED,
Timer.OC_TIMING, Timer.OC_ACTIVE, Timer.OC_INACTIVE,
Timer.OC_TOGGLE, Timer.OC_FORCED_ACTIVE, Timer.OC_FORCED_INACTIVE,
Timer.IC, Timer.ENC_A, Timer.ENC_B, or Timer.ENC_AB. Here, Timer.IC
is the input capture mode and Timer.OC_TIMING is the output compare mode
without output and used for internal timing purposes. Timer.ENC_A, Timer.ENC_B,
and Timer.ENC_AB are special input capture modes. They are used for encoder
operations. We will not explain them further in this book. All other output compare
modes will be explained in Chap. 7 related to the PWM-based DAC operations.
When the input capture mode is selected, additional polarity input is used to
select the signal edge. This value can be Timer.RISING, Timer.FALLING, or
Timer.BOTH. When the output compare modes are selected, additional compare
and polarity inputs can be used to set the compare register value and output
polarity. The polarity can be Timer.HIGH or Timer.LOW. pin is the pin object
which shows the pin connected to the selected channel, and alternate function for
this channel is configured automatically.

7
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6.3.3.2 Setting Up theWatchdog Timer
MicroPython has a WDT class to control the IWDG watchdog timer. This timer is
created using the function machine.WDT(timeout). When the function is called,
watchdog timer is started using the timeout value in milliseconds. This value
cannot be changed or stopped after initialization. The timeout resolution must be
in seconds and minimum timeout value must be 1 s.

6.3.3.3 Setting Up the RTC
MicroPython has the RTC class to control RTC. Hence, the RTC object can
be created using the function pyb.RTC. Its time can be set using the func-
tion datetime(year, month, day, weekday, hours, minutes, seconds,
subseconds). Here, weekday represents the day of the week and can be entered
between 1 and 7 for Monday through Sunday. Also, subseconds can be entered
between 0 and 255 and it counts down from the entered number. The function
calibration(cal) can be used to calibrate the RTC by adding or subtracting
number of cal ticks from the RTC clock over a 32 s period. cal value can be
selected between -511 and 512.

6.4 Timer Usage in the STM32F4Microcontroller

As the desired timer module is set in the STM32F4 microcontroller, it can be used
to serve its purpose. We will introduce how this can be done in this section. To do
so, we will evaluate the timer usage in C, C++, and MicroPython languages. While
doing this, we will provide usage examples as well.

6.4.1 Timer Usage in C Language

We can use the timer module in C language after setting its properties in
STM32CubeMX as explained in Sect. 6.3. Next, we will provide the usage options
for base timers, SysTick, watchdog timers, and RTC via related HAL library
functions. As a side note, C language provides the most detailed options to use all
available timer modules in the STM32F4 microcontroller.

6.4.1.1 Usage of Base Timers
After setting the desired base timer properties in Sect. 6.3, related timer ini-
tialization code is created under the function MX_TIMx_Init. This function is
called automatically in the “main.c” file. Then, specific HAL library functions
can be used to control the base timer. The functions HAL_TIM_Base_Start and
HAL_TIM_Base_Stop can be used to start or stop the base timer when it is not used
with interrupts. This mode is used when capture/compare channels are used or base
timer is used to trigger other peripherals. The functions HAL_TIM_Base_Start_IT
and HAL_TIM_Base_Stop_IT can be used to start or stop the base timer when
it is used with interrupts. This mode is used when specific time or time inter-
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vals are created to perform the desired time-based tasks without polling CPU.
HAL_TIM_PeriodElapsedCallback is the callback function which is executed
when triggered by update event. More information on these functions are given next.

HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
/*
htim: pointer to the TIM_HandleTypeDef struct.
*/

HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)

HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)

HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)

HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

The functions HAL_TIM_IC_Start_IT and HAL_TIM_IC_Stop_IT can be used
to start and stop input capture with interrupts on the selected channel. When the
input capture is done, the callback function HAL_TIM_IC_CaptureCallback
is executed. Inside it, captured values can be read using the function
HAL_TIM_ReadCapturedValue. More information on these functions are given
next.

HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
/*
htim: pointer to the TIM_HandleTypeDef struct.
Channel: variable used to select the channel for input capture

operation. It can be entered as TIM_CHANNEL_x where x is the
channel number.

*/

HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)

HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t
Channel)

The functions HAL_TIM_y_Start and HAL_TIM_y_Stop can be used to start
and stop the desired output compare modes. Functions HAL_TIM_y_Start_IT
and HAL_TIM_y_Stop_IT can be used for the same purpose with addi-
tional interrupt capability. Here, y can be OC for output compare, PWM for
PWM mode, and OnePulse for one pulse mode. The callback function
HAL_TIM_OC_DelayElapsedCallback is executed when the counter equals to
the value inside the capture/compare register. More information on these functions
are given next.

HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
/*
htim: pointer to the TIM_HandleTypeDef struct.
Channel: variable used to select the channel for output compare

operation. It can be entered as TIM_CHANNEL_x where x is the
channel number.

*/

HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
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HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)

HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
/*
Channel: variable used to select the channel for output compare

operation. It can be entered as TIM_CHANNEL_x where x is the
channel number. Only channel 1 and 2 can be used here.

*/

HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)

HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t
Channel)

HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t
Channel)

6.4.1.2 Usage of the System Timer
There is just one callback function named HAL_IncTick(void) for SysTick. This
function is called every millisecond. We can use it to run time-based operations as
such.

6.4.1.3 Usage of Watchdog Timers
After setting the desired watchdog timer properties in Sect. 6.3, related timer
initialization code is created under the functions MX_IWDG_Init or MX_WWDG_Init
based on the selected watchdog timer. The functions are called automatically in the
“main.c” file. Afterward, specific HAL library functions can be used to control the
watchdog timers. Functions HAL_IWDG_Refresh and HAL_WWDG_Refresh can be
used to refresh IWDG and WWDG peripherals, respectively. More information on
these functions are given next.

HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg)
/*
hiwdg: pointer to the IWDG_HandleTypeDef struct.
*/

HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg)
/*
hwwdg: pointer to the WWDG_HandleTypeDef struct.
*/
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6.4.1.4 Usage of the RTC
After setting the desired RTC properties in Sect. 6.3, related timer initialization code
is created under the function MX_RTC_Init. This function is called automatically
in the “main.c” file. Then, specific HAL library functions can be used to control
the RTC. Functions HAL_RTC_SetTime and HAL_RTC_SetDate can be used to
set time of the day or exact calendar time. Functions HAL_RTC_GetTime and
HAL_RTC_GetDate can be used to obtain the current day time or calendar time.
More information on these functions are given next.

HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime,
uint32_t Format)

/*
hrtc: pointer to the RTC_HandleTypeDef struct.
sTime: pointer to the Time struct.
Format: Time format is selected as binary with RTC_FORMAT_BIN or

BCD with RTC_FORMAT_BCD.
*/

HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate,
uint32_t Format)

HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime,
uint32_t Format)

HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate,
uint32_t Format)

The function HAL_RTC_SetAlarm_IT is used to set the desired alarm with
interrupt. The function HAL_RTC_AlarmAEventCallback is executed when
an alarm is generated. The set alarm can be deactivated using the function
HAL_RTC_DeactivateAlarm. More information on these functions are given
next.

HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *
sAlarm, uint32_t Format)

HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)

HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)

6.4.1.5 Timer Usage Examples via C Language
Let’s provide examples on the usage of timer modules via C language. Our first
example is toggling the red and green LEDs on the STM32F4 board. More precisely,
the green LED, connected to pin PG13 of the board, and red LED, connected to pin
PG14 of the board, will be toggled at 1 s intervals. There will be a 0.5 s delay
between the toggling operations in the red and green LEDs. To do so, we use the
external HSE clock. Then, the SYSCLK frequency is set to maximum 180 MHz
in the clock configuration window. Afterward, we enable the base timer TIM1
by selecting the internal clock as the clock source. We set the prescaler to 3599,
counter period to 49999, and counter mode to up mode to obtain ((49999+1) ×
(3599+1))/180000000 = 1 s update event period. The green LED is toggled using
this update event. Also, Channel 1 is configured as “Output Compare No Output.”
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We picked this mode to use the output compare mode to create the desired delay
between toggling red and green LEDs. Here, we do not create an output signal. After
the “Output Compare No Output” is selected from the related drop-down list, related
parameters are added to the “Parameter Settings” window. Among these, “Pulse”
value should be set to 25000 to obtain (25000 × (3599+1)) / 180000000 = 0.5 s
delay time. Finally, we enable the TIM1 update interrupt and TIM1 capture/compare
interrupt from the “NVIC Settings” window.

We provide the C code for our first example in Listing 6.1. Please add the
given code parts to the related locations in your “main.c” file. Here, we use the
code line if(__HAL_TIM_GET_FLAG(&htim1, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim1, TIM_FLAG_UPDATE) to clear the update
event flag in case it is set before the timer has started. When the timer init function
is executed, this flag is set beforehand and must be cleared to prevent erroneous run.

Listing 6.1 Toggling the red and green LEDs using the TIM1 update and compare interrupts, in
C language

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
}

void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
if (__HAL_TIM_GET_FLAG(&htim1, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim1, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim1);
HAL_TIM_OC_Start_IT(&htim1, TIM_CHANNEL_1);
/* USER CODE END 2 */

When the code in Listing 6.1 is executed, the red LED toggles first after 0.5 s
using the compare interrupt. Then, the green LED toggles after 1 s using the update
interrupt. Then, they keep toggling with 1 s intervals and 0.5 s between them.

Our second example is on turning on and off the green LED, connected to pin
PG13 of the STM32F4 board. More precisely, the green LED will be turned on if
pressing time of the user button, connected to pin PA0 of the STM32F4 board, is
more than 3 s. If this time is less than 3 s, then the green LED turns off. To do so,
we use the internal HSI oscillator to generate the 180 MHz SYSCLK. Afterward,
we enable the base timer TIM2 by selecting Channel 1 in the “Input Capture” direct
mode. We use Channel 1 of TIM2 since the user button on the STM32F4 board
is connected to this channel. We select “Polarity Selection” as “Both Edges” from
“Input Capture Channel 1” drop-down list. We also set the “Prescaler” to 0 and
“Counter” period to 0xFFFFFFFF to obtain (0xFFFFFFFF + 1)/(PCLK1 × 2) =
47.72 s capture time. Here, we use PCLK1 × 2 since TIM2 is fed by twice the
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PCLK1 frequency. Finally, we enable the capture/compare interrupt by selecting
TIM2 global interrupt box in the “NVIC Settings” window.

We provide the C code for our second example in Listing 6.2. Please add the
given code parts to the related places in your “main.c” file. When the user button
on the STM32F4 board is pressed, its output goes from low to high and captured
value is written to the variable icRisingEdgeValue. When the user button is
released, its output goes from high to low and captured value is written to the
variable icFallingEdgeValue. Then, we calculate the difference between these
two values. If the second value is smaller than the first one, it means that counter
is reset after first capture. Hence, the constant 0xFFFFFFFF + 1 is added to the
difference. As the time duration of the user button press is calculated this way, the
green LED is turned on or off accordingly.

Listing 6.2 Measuring the button pressing time using the input capture mode, in C language

/* USER CODE BEGIN PV */
uint32_t icRisingEdgeValue = 0;
uint32_t icFallingEdgeValue = 0;
uint32_t icDifferenceValue = 0;
float pressingTime = 0;
uint8_t icFlag = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
{
if (icFlag == 0)
{
icRisingEdgeValue = HAL_TIM_ReadCapturedValue(&htim2,

TIM_CHANNEL_1);
icFlag = 1;
}
else
{
icFallingEdgeValue = HAL_TIM_ReadCapturedValue(&htim2,

TIM_CHANNEL_1);
if (icFallingEdgeValue > icRisingEdgeValue)
{
icDifferenceValue = icFallingEdgeValue - icRisingEdgeValue;
}

else
{
icDifferenceValue = 0xFFFFFFFF + 1 + icFallingEdgeValue -

icRisingEdgeValue;
}
pressingTime = ((float)icDifferenceValue) / (2 *

HAL_RCC_GetPCLK1Freq());
if (pressingTime > 3.0)
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
icFlag = 0;
}
}
}
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/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
/* USER CODE END 2 */

In our third example, the green LED connected to pin PG13 of the STM32F4
board is toggled at 1 s intervals using SysTick. To do so, we use the external HSE
clock. Then, the SYSCLK frequency is set to 180 MHz and “Cortex System Timer”
is set to the same value by setting its prescaler to 1. We provide the C code for our
third example in Listing 6.3. Please add the given code parts to the related places in
your “main.c” file.

Listing 6.3 Toggling the green LED using SysTick, in C language

/* USER CODE BEGIN PV */
uint16_t sysTickCnt = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_IncTick(void)
{
sysTickCnt++;
if (sysTickCnt >= 1000)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
sysTickCnt = 0;
}
}
/* USER CODE END 0 */

In our fourth example, the green LED connected to pin PG13 of the STM32F4
board is toggled at 1 s intervals using the TIM1 update event. To do so, we use
the same clock and timer configurations given in the first example. We also start the
IWDG module with 4 s timeout value. To do so, we activate IWDG from the “IWDG
Mode and Configuration” window. Then, its prescaler is set to 32 and down-counter
reload value is set to 4000. Hence, we obtain 4000 × 32 / 32000 = 4 s timeout value.
We provide the C code for our fourth example in Listing 6.4. Please add the given
code parts to the related places in your “main.c” file.

Listing 6.4 Using IWDG to reset the system, in C language

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM1)
{
HAL_IWDG_Refresh(&hiwdg);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
}
}

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
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while (1);
}
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
if (__HAL_TIM_GET_FLAG(&htim1, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim1, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim1);
/* USER CODE END 2 */

In Listing 6.4, we refresh the IWDG module in TIM1 update interrupt callback
function every second. Hence, if there is no problem, then the green LED keeps
toggling. However, when the user button connected to pin PA0 of the STM32F4
board is pressed, the system is stuck in an infinite loop. As a result, the green LED
stops toggling. After 4 s, system is reset by IWDG and the green LED starts toggling
again. This example shows how effective the watchdog timer is in an unexpected
infinite loop trap.

Our fifth example deals with setting the RTC alarm and generating an interrupt
accordingly. The green LED, connected to pin PG13 of the STM32F4 board, is
turned on within the callback function. To do so, we first select the RTC clock.
We use the external HSE clock and divide it by 25 to obtain 320 kHz RTC clock
since the STM32F4 board does not have an LSE crystal. Then, we activate RTC
and enable its “Alarm A.” We set the asynchronous predivider value to 124 and
synchronous predivider value to 2559 in the “Parameter Settings” window. Hence,
we obtain 1 Hz from the 320 kHz RTC. Afterward, we should enter the current
date and time as “Calendar Time” and set alarm time to 1 min after the calendar
time. Finally, we enable the alarm interrupt from the “NVIC Settings” window. We
provide the C code for the fifth example in Listing 6.5. Please add the given code
parts to the related places in your “main.c” file. As the code is executed, it can be
seen that the green LED toggles in the designated time.

Listing 6.5 Using the alarm property of RTC, in C language

/* USER CODE BEGIN 0 */
void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
}
/* USER CODE END 0 */

6.4.2 Timer Usage in C++ Language

We will next consider the timer usage in C++ language under Mbed. To do so,
we will consider base timers, watchdog timer, and RTC. We will provide usage
examples for these timers as well.
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6.4.2.1 Usage of Base Timers
Mbed uses the std::chrono API to measure the elapsed time. If a timer is
created as Timerx, Timerx.elapsed_time().count() is used to measure
the elapsed time from start in microseconds. Casting can be done to the count
value to measure the elapsed time in milliseconds, seconds, or seconds as float.
To do so, the pattern is chrono::duration_cast<chrono::milliseconds>
(Timerx.elapsed_time()).count(), chrono::duration_cast
<chrono::seconds>(Timerx.elapsed_time()).count(), and chrono::
duration<float>(Timerx.elapsed_time()).count() for milliseconds,
seconds, and seconds as float, respectively.

After the Timeout class is created, the function attach(callback, time)
can be used to execute the callback function callback after desired seconds
set by the time value. When microsecond time delay is needed, the function
attach_us(callback, time) should be used. Here, the time value represents
the time in microseconds. The detach function is used to detach the callback
function from the timer.

6.4.2.2 Usage of theWatchdog Timer
The function start(uint32_t timeout) is used to start the watchdog timer
with the given timeout value. If the input of the function is empty, it is started
with the maximum timeout value. Watchdog timer can be stopped using the
function stop. Or, it can be refreshed using the function kick. Status of the
watchdog timer can be observed using the function is_running. Entered time-
out or maximum available timeout values can be obtained using the functions
get_timeout and get_max_timeout, respectively. These functions can be used
as Watchdog::get_instance().kick() or as WatchdogX.kick() if referenced
as Watchdog &WatchdogX = Watchdog::get_instance().

6.4.2.3 Usage of the RTC
After the RTC date is set, current time can be observed using the function
ctime(time_t *timer). This function calculates the current time from the timer
value and returns it in the format Www Mmm dd hh:mm:ss yyyy. Here, Www is the
weekday. Mmm is the month (in string). dd is the day of the month. hh:mm:ss is the
time, and yyyy is the year. The timer value in the function can be obtained from
RTC using time(NULL).

6.4.2.4 Timer Usage Examples via C++ Language
Next, we provide Mbed-based timer usage examples. We start with repeating the
first example given in Sect. 6.4.1. Mbed does not have a function to be used for the
output compare mode for timing purposes. Hence, we used two ticker classes to
toggle the red and green LEDs in 1 s intervals in our example. We also used another
timeout class to create 0.5 s delay between the red and green LEDs. We provide the
C++ code for our first example in Listing 6.6.
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Listing 6.6 Toggling the green and red LEDs using timer interrupts, in C++ language

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
Timeout timeoutDelay;
Ticker ticker1;
Ticker ticker2;

void toggleGreenLED()
{
greenLED = !greenLED;
}

void toggleRedLED()
{
redLED = !redLED;
}

void delay05()
{
toggleRedLED();
ticker1.attach(&toggleRedLED , 1s);
}

int main()
{
timeoutDelay.attach(&delay05, 500ms);
ticker2.attach(&toggleGreenLED , 1s);

while (1);
}

In Listing 6.6, timeoutDelay is the created Timeout class, and it calls the
function delay05() once to create 0.5 s delay between LEDs. In the function
delay05(), the red LED connected to pin PG14 of the board is toggled using the
function toggleRedLED(). ticker1, the created Ticker class, is also attached to
the function toggleRedLED() to toggle the red LED with 1 s intervals. ticker2,
the second created Ticker class, is attached to the function toggleGreenLED() at
the beginning of the main function to toggle the green LED with 1 s interval.

We next repeat the second example given in Sect. 6.4.1 now in C++ language.
Mbed does not have a function for the input capture mode. Hence, we use the GPIO
interrupts and Timer class to measure the duration between successive interrupt
requests. We provide the corresponding C++ code for this example in Listing 6.7.

Listing 6.7 Measuring button pressing time using GPIO interrupts and timer, in C++ language

#include "mbed.h"

InterruptIn userButton(BUTTON1);
DigitalOut greenLED(LED1);
Timer timer1;

uint32_t elapsedMs;

void triggerRise()
{
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timer1.start();
}

void triggerFall()
{
timer1.stop();
elapsedMs = chrono::duration_cast <chrono::milliseconds >(timer1.

elapsed_time()).count();
if (elapsedMs > 3000)
greenLED = 1;
else
greenLED = 0;
timer1.reset();
}

int main()
{
userButton.rise(&triggerRise);
userButton.fall(&triggerFall);

while (1);
}

In Listing 6.7, the timer1 is started at the rising edge of the GPIO interrupt
generated by the user button press. At the falling edge of the user button press,
the timer1 is stopped and elapsed time is measured in milliseconds. If the elapsed
time is greater than 3000 ms, then the green LED on the STM32F4 board turns on.
Otherwise, the green LED turns off. Finally, the timer1 is reset to measure the next
pressing time.

The fourth example in Sect. 6.4.1 can also be done via Mbed. We provide the
corresponding C++ code in Listing 6.8. Here, the watchdog timer is started with
4000 ms timeout value. The watchdog is reset and the green LED is toggled every
second. When the user presses the onboard button, the system is stuck in an infinite
loop. The green LED stops toggling. After 4 s, the system is reset by the watchdog
timer. Hence, the green LED starts toggling again.

Listing 6.8 Using the watchdog timer to reset stuck system, in C++ language

#include "mbed.h"

DigitalOut greenLED(LED1);
InterruptIn userButton(BUTTON1);
Ticker ticker1;

void toggleGreenLED()
{
greenLED = !greenLED;
Watchdog::get_instance().kick();
}

void trigger()
{
while (1);
}

int main()
{
Watchdog &wdt = Watchdog::get_instance();
ticker1.attach(&toggleGreenLED , 1s);
wdt.start(4000);
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userButton.rise(&trigger);

while (1);
}

In our final Mbed-based timer example, we use the RTC to observe the current
time when the user button is pressed. We provide the C++ code for our example
in Listing 6.9. Within the code, we first set the date as “31 July 2020 18:18:18.”
When the user button is pressed, the current time based on set date is displayed.
To do so, we set a flag in the callback function trigger when the user button is
pressed. Then, we use the printf function in the main function to perform the
printing operation. We followed such a procedure since it is recommended not to
use the printf function inside callback functions since it is slow. When printf
is being executed within the callback function, another interrupt may emerge. This
either causes a problem or other interrupts may be missed. Therefore, we control
the printf function by a flag outside the callback function.

Listing 6.9 Using RTC to display the current time, in C++ language

#include "mbed.h"

InterruptIn userButton(BUTTON1);

tm date;
uint8_t flag = 0;

void trigger()
{
flag = 1;
}

int main()
{
userButton.rise(&trigger);
date.tm_year = 120;
date.tm_mon = 6;
date.tm_mday = 31;
date.tm_hour = 18;
date.tm_min = 18;
date.tm_sec = 18;
set_time(mktime(&date));

while (true)
{
if (flag == 1)
{
time_t seconds = time(NULL);
printf("Current Time = %s\r\n", ctime(&seconds));
flag = 0;
}
}
}
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6.4.3 Timer Usage in MicroPython

We finally consider the timer usage via MicroPython. To do so, we will consider
base timers, watchdog timer, and RTC. We will also provide usage examples for
these timers as well.

6.4.3.1 Usage of Base Timers
The function callback(fun) can be used to set the callback function fun after the
base timer is created and initialized. After the timer is created as Timerx, it can be
used as Timerx.callback(fun).

The function callback(fun) can be used to set the capture/compare callback
function fun after the capture/compare channel is created and initialized. After the
timer channel is created as TimerChannelx, it can be used as TimerChannelx.
callback(fun). The functions capture() and compare() of the created cap-
ture/compare channel can be used to get the captured time or set the desired compare
value.

6.4.3.2 Usage of theWatchdog Timer
There is only one function to control IWDG in MicroPython. This function is feed.
It is used to refresh the watchdog timer to prevent system reset.

6.4.3.3 Usage of the RTC
The function datetime() can be used to obtain the current time after the RTC is
set. Please remember that the same function was used for setting the desired time.
However, it returns the current time when used with no input argument. The function
wakeup(timeout, callback) can be used to execute the callback function in
every timeout interval given in milliseconds. This function can be used to wake up
from stop or standby modes.

6.4.3.4 Timer Usage Examples via MicroPython
We can use the timer modules in the STM32F4 microcontroller via MicroPython.
We provide such examples in this section. We will start with repeating the first
example given in Sect. 6.4.1 for this purpose. We provide the MicroPython code for
this example in Listing 6.10.

Listing 6.10 Toggling the red and green LEDs using the TIM1 update and compare interrupts, in
MicroPython

import pyb

greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)

def toggleGreenLED(timer):
greenLED.value(not greenLED.value())

def toggleRedLED(timer):
redLED.value(not redLED.value())

def main():
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timer1 = pyb.Timer(1, prescaler=3359, period=49999, mode=pyb.
Timer.UP)

timer1CH1 = timer1.channel(1, pyb.Timer.OC_TIMING , polarity=
pyb.Timer.HIGH, compare=24999)

timer1.callback(toggleGreenLED)
timer1CH1.callback(toggleRedLED)

main()

In Listing 6.10, SYSCLK is set to 168 MHz in MicroPython. Hence, we set the
prescaler to 3359, counter period to 49999, and counter mode to “Up mode” to
obtain ((49999+1) × (3359+1))/168000000 = 1 s update event period within the
code. As a result, the red LED toggles first after 0.5 s using the compare interrupt.
Then, the green LED toggles after 1 s using the overflow interrupt. Then, both LEDs
keep toggling with 1 s interval and 0.5 s between them.

We next repeat the second example given in Sect. 6.4.1 using MicroPython. We
provide the corresponding MicroPython code used for this purpose in Listing 6.11.
As mentioned in the previous example, SYSCLK is set to 168 MHz in MicroPython.
Hence, PCLK1 is set to 42 Mhz. Therefore, we set the Timer 2 prescaler to 7 and
period to 0x0FFFFFFF to obtain (0x0FFFFFFF + 1)/(PCLK1 × 2/(7 + 1)) = 25.57 s
capture time in the code. We use Channel 1 of Timer 2 since the user button on
the STM32F4 board is connected to this channel. When the user button is pressed,
its output goes from low to high and the captured value is written to the variable
icRisingEdgeValue. When the user button is released, its output goes from high
to low and the captured value is written to the variable icFallingEdgeValue.
Then, the difference between these two values is calculated. If this difference is
greater than 3 s, the green LED is turned on. Otherwise, the green LED is turned
off.

Listing 6.11 Measuring button pressing times using input capture mode, in MicroPython

import pyb

timer2 = pyb.Timer(2, prescaler=7, period=0x0FFFFFFF, mode=pyb.
Timer.UP)

timer2CH1 = timer2.channel(1, pyb.Timer.IC, pin=pyb.Pin.board.PA0
, polarity=pyb.Timer.BOTH)

greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
calcFlag = 0
icRisingEdgeValue = 0
icFallingEdgeValue = 0
icDifferenceValue = 0
pressingTime = 0

def ic_callback(tim):
global calcFlag
global icRisingEdgeValue
global icFallingEdgeValue
if pyb.Pin.board.PA0.value():

icRisingEdgeValue = timer2CH1.capture()
else:

icFallingEdgeValue = timer2CH1.capture()
calcFlag = 1

def main():
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global calcFlag
global pressingTime
global icDifferenceValue
timer2CH1.callback(ic_callback)
while True:

if calcFlag == 1:
if icFallingEdgeValue > icRisingEdgeValue:

icDifferenceValue = icFallingEdgeValue -
icRisingEdgeValue

else:
icDifferenceValue = 0x0FFFFFFF + 1 +

icFallingEdgeValue - icRisingEdgeValue
pressingTime = (icDifferenceValue)/(10500000)
print(pressingTime)
if pressingTime > 3.0:

greenLED.value(1)
else:

greenLED.value(0)
calcFlag = 0

main()

We can repeat the fourth example given in Sect. 6.4.1 using MicroPython as
well. We provide the corresponding MicroPython code for this case in Listing 6.12.
Within the code, the watchdog timer is started with 4000 ms timeout value. The
callback function toggleGreenLED is called every second. Within it, the green
LED toggles and the WDT is reset. However, the flag variable should have value
0 for these operations. When the user presses the button, the flag variable is set to
1. Hence, toggling the LED and resetting the WDT is blocked. Therefore, the CPU
resets after 4 s and the green LED restarts toggling.

Listing 6.12 Using the watchdog timer to reset the system, in MicroPython

import pyb
import machine

greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
wdt = machine.WDT(timeout=4000)
flag = 0

def toggleGreenLED(timer):
global flag
if flag == 0:

greenLED.value(not greenLED.value())
wdt.feed()

def trigger(pin):
global flag
flag = 1

def main():
pyb.ExtInt(’PA0’, mode=pyb.ExtInt.IRQ_RISING , pull=pyb.Pin.

PULL_NONE , callback=trigger)
timer1 = pyb.Timer(1, prescaler=3359, period=49999, mode=pyb.

Timer.UP)
timer1.callback(toggleGreenLED)

main()
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We finally repeat the fifth example given in Sect. 6.4.2 using MicroPython. We
provide the corresponding MicroPython code in Listing 6.13. Here, we set the
current date to “Friday July 31 2020 18:18:18:000” first. When the user button is
pressed, the current time based on the set date is displayed. Here, we set a flag
when the button is pressed and perform the printing operation in the main function
using this flag. This procedure is followed since it is recommended not to use print
function inside the callback function.

Listing 6.13 Using RTC to display the current time, in MicroPython

import pyb

flag = 0

def trigger(pin):
global flag
flag = 1

def main():
global flag
pyb.ExtInt(’PA0’, mode=pyb.ExtInt.IRQ_RISING , pull=pyb.Pin.

PULL_NONE , callback=trigger)
rtc = pyb.RTC()
rtc.datetime((2020, 7, 31, 5, 18, 18, 18, 0))
while True:

if flag == 1:
print(rtc.datetime())
flag = 0

main()

6.5 Application: Timing Operations in the Robot Vacuum
Cleaner

In this chapter, we perform the time-based operations in our robot vacuum cleaner.
Therefore, we measure the speed of our robot with encoders and photosensors
connected to its wheels. We also set the RTC. Hence, the robot automatically wakes
up at the same time every day, sweeps the room, and returns to standby mode.
We provided the equipment list, circuit diagram, detailed explanation of design
specifications, and peripheral unit settings in a separate document in the folder
"Chapter6\EoC_applications" of the accompanying supplementary material.
In the same folder, we also provided the complete C, C++, and MicroPython codes
for the application.
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6.6 Summary of the Chapter

Time is one of the most valuable assets in today’s world. Hence, time-based
operations are crucial in embedded applications. Therefore, we explored how time-
based operations are done in the STM32F4 microcontroller (as an embedded
system) in this chapter. To do so, we started with the oscillators in the STM32F4
microcontroller and STM32F4 board as the main building block of clock modules
in the microcontroller. Then, we explored different timer modules available in the
STM32F4 microcontroller. These timers are based on clock signals to operate.
Besides, they have different usage areas. We covered these by providing usage
examples to each in this chapter. Finally, we added time-based properties to our
application considered in the previous chapters as the end of chapter application.

Problems

6.1. Why should there be more than one timer module in an embedded system?

6.2. What types of oscillators are available in the STM32F4 microcontroller and on
the STM32F4 board? Compare properties of these oscillators.

6.3. How can we solve the switch bouncing problem by using timer modules?

6.4. How does a prescaler (more specifically frequency divider) work?

6.5. Form a project to count the number of user button (on the STM32F4 board)
presses within 1 min. Each button press should evoke an interrupt. Use appropriate
timer in operation. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

6.6. Add power management option to Problem 6.5 such that the STM32F4
microcontroller waits in an appropriate low power mode when not used.

6.7. Form a project with the following specifications. When the user presses the
button on the STM32F4 board, the green LED on the board turns on. The LED
should turn off after 5 s. Use an appropriate timer module in operation. Form the
project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.
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6.8. Add power management option to Problem 6.7 such that the STM32F4
microcontroller waits in an appropriate low power mode when not used.

6.9. A stepper motor is a special type of brushless DC motor, and its rotation is
divided into number of equal steps. Stepper motors have different number of coils
and by energizing each coil in sequence, stepper motor rotates for one step at each
time. The speed of the stepper motor can be adjusted by changing delay between
each phase. Form a project with the following specifications. There is a stepper
motor with four phases and 200 steps for one rotation. The phases are connected
to pins PE2, PE3, PE4, and PE5 of the STM32F4 board. The stepper motor has
three different speeds as fast, normal, and slow which can be changed using the
onboard push button. Delay between phases is set to 5 ms, 20 ms, and 50 ms for each
mode, respectively. The stepper motor stops operating automatically after 20 turns.
Delay between phases and total run time of stepper motor are controlled using TIM2
module. Add power management option to your solution such that the STM32F4
microcontroller waits in an appropriate low power mode when not used. Form the
project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

6.10. Form a project with the following specifications. The green LED on the
STM32F4 board toggles every hour, every day at 9:00 AM, and every week
Mondays at 9:00 AM. Use an appropriate timer module in operation. Add power
management option to your solution such that the STM32F4 microcontroller waits
in an appropriate low power mode when not used. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

6.11. Repeat Problem 6.10 such that the green LED will turn on at the designated
time. Then, it will turn off after 10 s.

6.12. Repeat Problem 4.9 with an appropriate timer module. Add power manage-
ment option to your solution such that the STM32F4 microcontroller waits in an
appropriate low power mode when not used.

6.13. Repeat Problem 4.10 with an appropriate timer module. Add power manage-
ment option to your solution such that the STM32F4 microcontroller waits in an
appropriate low power mode when not used.



154 6 Timing Operations

6.14. Repeat Problem 4.11 with an appropriate timer module. Add power manage-
ment option to your solution such that the STM32F4 microcontroller waits in an
appropriate low power mode when not used.

6.15. Form a project with the following specifications. The IWDG module is started
to reset the STM32F4 microcontroller after 4 s. The push button is used to kick
the watchdog timer when pressed. Finally, the Timer 13 module is configured to
generate interrupts with 1 s interval. In the first 4 s, the Timer 13 is used to reset
the IWDG counter. After 4 s, the timer toggles the onboard green LED. Add power
management option to your solution such that the STM32F4 microcontroller waits
in an appropriate low power mode when not used. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

6.16. Form a project with the following specifications. The Timer 3 module is
configured as master to toggle its output with 0.1 Hz frequency. The Timer 2
module is configured as slave to toggle the onboard green LED with 1 s interval.
The Timer 2 module is enabled/disabled by the Timer 3 module output signal. Add
power management option to your solution such that the STM32F4 microcontroller
waits in an appropriate low power mode when not used. Form the project using C
language under STM32CubeIDE.

References

1. STMicroelectronics: STM32F405/415, STM32F407/417, STM32F427/437 and
STM32F429/439 advanced Arm-based 32-bit MCUs, rm0090 rev 19th edn. (2021)

2. Ünsalan, C., Tar, B.: Digital System Design with FPGA: Implementation Using Verilog and
VHDL. McGraw-Hill, New York (2017)



7Conversion Between Analog and
Digital Values

7.1 Analog and Digital Values

From an embedded system perspective, there are two types of values as analog and
digital. We will consider these in detail in this section. We will also consider how
digital values can be represented in code form.

7.1.1 Analog Values in Physical Systems

In order to explain analog values better, let’s take temperature readings of a room.
We can measure the temperature value at any time instant. Hence, we can have
infinite number of observations at hand. Each observation can be represented by
infinite precision depending on the measuring device. In short, we can obtain infinite
number of observations, each having infinite precision. These are the two defining
properties of analog values.

Temperature is not the only analog value in real world. In fact, measurements
taken from actual physical systems will be in analog form most of the times. We
will need a sensor to make such measurements. Although sensors differ based
on their application areas, they share a common property. A sensor converts one
value to another form. For our purposes, we will pick sensors converting a physical
measurement to electrical form either as voltage or current. Hence, it can be
processed in the embedded system. We will introduce specific sensors for the
application at hand whenever needed throughout the book.
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Fig. 7.1 A sample analog signal

We can represent analog values in time. Such a representation will be called
analog signal. We provide a sample analog signal in Fig. 7.1. The reader should
always remember that this signal is composed of infinite number of values.
Amplitude of the signal at any time instant will have infinite precision as well.

7.1.2 Digital Values in Embedded Systems

An embedded system has limited memory space and processing power by its nature.
In other words, we cannot store or process infinite numbered and ranged analog
values in the embedded system. The suitable form for such systems is digital. The
basic digital representation is the bit which can take two values as logic level 0 or 1.
In order to have a more general digital representation, we will need type definitions.
Since these depend on the programming language used in the embedded system, we
will cover them in Sect. 7.1.3.

Before going further, we should briefly explain how a digital value is represented
in an embedded system. To do so, let’s focus on the simplest digital form as one
bit which can have a value as logic level 0 or 1. As explained in Chap. 4, each
logic level is represented by a voltage value. However, instead of using the analog
voltage there, its level is used. Therefore, all processes based on the bit are based
on predefined voltage levels, not the exact analog voltage value. This is the main
difference of digital representation.

As in analog signals, we can have digital signals. Here, we assume that we are
keeping successive digital values in successive memory locations. We provide a
sample digital signal in Fig. 7.2. We will consider properties of digital signals further
in Chap. 12.
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Fig. 7.2 A sample digital signal

7.1.3 Digital Values in Code

A single bit representing logic level 0 or 1 is not sufficient to cover all digital values.
Each programming language has its own format, as data types, to represent them.
Hence, we allocate fixed number of bits to a digital value in a specific format. Let’s
consider them in C, C++, and Python languages.

7.1.3.1 Data Types in C and C++ Languages
Data types in C and C++ languages have slight variations based on the embedded
platform used. Therefore, we pick the representation used by Arm® Cortex™-M-
based microcontrollers. In this representation, the C and C++ data types share the
same properties. The only difference is that C++ has extra data types to be explained
next.

The C language has five fundamental data types for data storage [1]. These
are char, short, int, float, and double. The former three keep only the
integer part of the number. The latter two data types can keep the integer and
fractional parts of the number. For more information on the integer and fractional
number representations, please see [6]. The mentioned data types also have their
type modifiers as signed, unsigned, and long. These define the number of bits
assigned to the number. As an example, the char data type has 8 bits assigned to
it. If its unsigned version is used, then all 8 bits are assigned to represent the value
of the number. If the signed bit representation of char data type is used, then the
most significant bit is assigned to sign representation. The remaining seven bits are
assigned to represent the value of the number.

The reader can also benefit from the integer data types defined under the
“stdint.h” header file for microcontrollers. We can summarize them based on the
number of bits assigned as follows. The 8-bit data types uint8_t and int8_t
can be used instead of char and signed char, respectively. The 16-bit data
types uint16_t and int16_t can be used instead of unsigned short and
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short, respectively. The 32-bit data types uint32_t and int32_t can be used
instead of unsigned int and int, respectively. The 64-bit data types uint64_t
and int64_t can be used instead of unsigned long long and long long,
respectively.

The C++ language has the same data types and type modifiers as with the C
language. Besides, it also has boolean and wchar_t data types. For a more detailed
and thorough representation of C and C++ data types in Arm® architecture, please
see [1, 3].

7.1.3.2 Data Types in Python
Being a high-level programming language, data types in Python are more diverse.
We will use the int, float, complex, string, and boolean data types in this
section. We may introduce other Python data types in the following chapters if
needed. As the name implies, the int data type can store integer numbers. There
is no limit in terms of the number of assigned bits to an integer representation as
long as the memory requirements are satisfied. The float data type can be used to
store numbers having integer and fractional parts. The maximum float number can
be 1.8e308. A value higher this limit is taken as infinite. The minimum number
being close to zero is 5e-324. Values lower than this range are taken as zero. The
complex data type can be used to store complex numbers. The string data type
can be used to store character arrays in more compact form. Finally, the boolean
data type can store a value either as True or False. For more information on Python
data types and how they are handled within its interpreter, please see [2].

7.2 Analog to Digital Conversion in Embedded Systems

In order to process an analog value in an embedded system, we should convert it to
digital form. Hence, the digital value will have limited range. Besides, if we intend
to obtain a digital signal from its analog counterpart, then we will have limited
samples as well. The ADC module within the embedded system is responsible for
this operation.

The ADC module performs two operations as sampling and quantization. We
will explain these in detail in this section. Then, we will focus on the STM32F4
microcontroller as the embedded system and explain all the steps within it related
to the ADC operation.

7.2.1 Sampling

Sampling is the first step in analog to digital conversion. The analog value is
acquired in time by sampling. In other words, the analog value is observed at a
certain time instant.

The sampling operation is performed in a periodic manner most of the times.
Therefore, we acquire successive samples of the analog signal in time. We will need
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Fig. 7.3 Sampled signal

a clock signal for this operation. The most important issue here is the sampling rate
in which how many samples are acquired in 1 s. This is called sampling frequency
represented by Hz. The duration between two samples is called the sampling period
(one over the sampling frequency).

There are theoretical limits on the required sampling frequency for a given analog
signal [7]. Unfortunately, it is not possible to select a specific sampling frequency in
an embedded system due to its physical hardware. We will evaluate possible values
for the STM32F4 microcontroller in Sect. 7.2.3.

Let’s provide a simple example on the sampling operation. Assume that the
analog voltage at an electrical circuit is as in Fig. 7.1. This is in fact an analog signal
with 2 V peak to peak and 1 V DC offset value. We would like to take samples of
this signal at every millisecond. Hence, we will have observations of the signal by
the 1 kHz sampling frequency. Then, the sampled signal becomes as in Fig. 7.3.

7.2.2 Quantization

As we sample the signal, we obtain its values at certain time instants. However, the
value of each sample still has infinite range. Since we cannot store such a value in
the embedded system, we should map it to finite range. Quantization performs this
operation. Let’s see how this can be done.

First and most important of all, there should be minimum and maximum voltage
values as limits in the quantization operation. This is called the full-scale range
(FSR). Second, we should allocate certain number of bits to represent the analog
value. The number of allocated bits indicates the total number of levels we can use
to represent the analog value. To be exact, N number of bits will result in a total of
2N levels. Each level in quantized form corresponds to a bin having certain width in
analog form. Therefore, all analog values within the bin are represented by the same
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Fig. 7.4 The quantization operation

digital value. This will be the case for all bins in the quantization operation. We can
represent the bin width based on FSR and number of levels as � = FSR/2N . The
bin width is also directly related to the resolution such that a higher quantization
level corresponds to better resolution with the same FSR value. We schematically
show all these definitions in Fig. 7.4.

We can represent the quantization operation for the STM32F4 microcontroller
as follows. The FSR for this microcontroller is set by the positive and negative
reference voltage values Vref + and Vref −. The negative reference voltage is set to
VSSA (ground voltage) for most general-purpose microcontrollers. This is also the
case for the STM32F4 microcontroller. Hence, we will have FSR = Vref +. The
maximum number of bits assigned to the result of the ADC operation is 12 in the
STM32F4 microcontroller. Hence, N = 12 here. This leads to
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� = Vref +
212 (7.1)

The ADC operation represents the lowest analog voltage bin range, �, with the
digital value zero. Likewise, the highest analog voltage bin range, Vref + − �, will
have the corresponding digital value as 2N−1. Based on these limits, we can obtain
the digital (quantized) value for a given input voltage Vin as

Q =
⌊

Vin

�

⌋
(7.2)

where �·� indicates the floor function. We should note that when Vin = Vref + we
will still have Q = 2N−1. Although this case could have been formalized in Eq. 7.2,
it would complicate the formula. Therefore, we handled it as a separate case.

Since we assign 12 bits for quantization, the quantized value can be represented
in unsigned integer with 16 bits, unsigned short or uint16_t format, as
mentioned in Sect. 7.1.3. Since 12 is less than 16, the most significant 4 bits will be
set to zero. As a result, we have an unsigned number to represent the input analog
voltage.

After obtaining the digital (quantized) value of an input voltage, we can convert
it to float form by

Qf = Q

2N
Vref + (7.3)

Please remember that even in this case, we will have quantized levels. However,
each quantization level will be in float form.

Let’s provide three examples on the quantization operation. In our examples, we
will take Vref + = 3.3 V and N = 12. First, assume that Vin = �/2. The digital
value corresponding to this input voltage will be 0. Hence, it can be represented in
unsigned short form as 0x0000. Second, assume that Vin = 3.3/2. The digital
value corresponding to this input voltage will be 2048. Hence, it can be represented
in unsigned short form as 0x0800. Third, assume that Vin = 3.3 − �/4. The
digital value corresponding to this input voltage will be 4095. Hence, it can be
represented in unsigned short form as 0x0FFF.

7.2.3 ADC Operation in the STM32F4Microcontroller

Up to now, we explained sampling and quantization as if they are two separate
operations. In practice, they are handled together by the ADC module. Besides,
ADC modules in different embedded systems have their limitations. Therefore,
we pick the STM32F4 microcontroller and explain working principles of its ADC
module next.
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Fig. 7.5 Block diagram of the ADC module in the STM32F4 microcontroller

There are three ADC modules in the STM32F4 microcontroller called ADC1,
ADC2, and ADC3. These modules can work independently. Therefore, we can
configure the sampling frequency used in the ADC operation for each module
separately. These modules provide 12-bit output. Hence, they are called 12-bit ADC
modules. Based on the definitions in the previous section, we know that the total
number of levels these ADC modules provide is 212. Finally, each ADC module
works by the successive approximation register (SAR) methodology in analog to
digital conversion. For further information on SAR, please see [5].

General block diagram of one ADC module in the STM32F4 microcontroller
is as in Fig. 7.5. We will next explore the steps in this block diagram in detail.
Therefore, we will cover input sources, triggers, modes, and sampling and clocks
next. To note here, we will only cover one ADC module from this point on since the
other two have exactly the same properties.

7.2.3.1 Input Sources
The ADC module in the STM32F4 microcontroller has up to 19 input channels
(input sources) as being internal and external. External channels are the GPIO
pins that can be used for connecting external sources. We tabulated GPIO pins
of the STM32F4 microcontroller, available on the STM32F4 board, that can
be used for ADC input in Sect. 2.3.2. Internal channels are connected to the
internal reference voltage (Vrefint), internal temperature sensor (Vsense), and Vbat
monitoring (Vbat/4) pins of the microcontroller.

The STM32F4 microcontroller ADC module also has voltage supply inputs as
VDDA and VSSA. They are used to feed power to the module. The VSSA pin of
the ADC module is connected to ground externally on the STM32F4 board. The
VDDA pin of the ADC module is connected to VDD pin of the STM32F4 board
externally with a noise filter. Hence, other digital operations do not add noise during
the conversion operation. Besides, the ADC module has Vref+ and Vref− inputs.
These define the FSR in the analog to digital conversion operation. The Vref− pin
is connected to ground internally in the STM32F4 microcontroller. The Vref+ pin
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is connected to VDDA which is also connected to VDD in the STM32F4 board.
Hence, the FSR for the ADC operation becomes VDD.

7.2.3.2 Triggers
The ADC operation can start in two different ways. First, the ADC module can be
triggered by software via code snippet. Second, the ADC module can be triggered
by hardware using a peripheral unit such as GPIO or timer. As for the software
trigger, the ADC module should be set up first. Then, we can use a special register
bit which starts the conversion. This bit can be accessed by the HAL library, Mbed,
or MicroPython functions in the user code.

If we want to use the hardware trigger, then we should wait for an event
(interrupt) to occur. The hardware trigger edge polarity can be selected as rising,
falling, or both rising and falling. This means that the ADC module will be triggered
when the trigger signal goes from low to high, from high to low, or in both
transitions. We can use the EXTI_11 line, connected to 11th pin of the GPIO
ports, for generating a hardware trigger. Also, the timer capture/compare events
or timer trigger out events (interrupts) can be used for this purpose. Please consult
the reference manual to see which timers and timer channels can trigger the ADC
module [4].

7.2.3.3 OperatingModes
The ADC module can work in different operating modes as single-shot, continuous,
or discontinuous. These modes have their configurations as single or scan (multi)
channel. We provide them as a flowchart in Fig. 7.6.

The ADC module performs conversion using a single input in the single channel
mode. In the scan (multi) channel mode, there can be more than one input to the
ADC module. The module performs conversion using these sequentially (one after
the other).

The ADC module stops after performing one conversion in the single-shot mode.
If the scan channel mode is selected in this mode, then the conversion is performed
for each channel. Afterward, the conversion stops. If a new conversion is required in
the single-shot mode, then the module should be triggered again. In the continuous
mode, the ADC module performs conversion automatically without re-triggering
until the user stops it within the code. There is also discontinuous mode which
can be only used if channel conversion mode is configured as scan channel. In
this mode, the conversion stops after each channel while performing the conversion
using multiple channels. The ADC module should be triggered to move on to the
next channel.

There may be cases in which it may be required to convert another input while the
ADC module is converting preselected inputs regularly. This can be accomplished
by the injected mode in which the configuration of regular conversion operation is
not modified. Figure 7.7 shows the injected conversion operation. Here, the regular
ADC conversion is interrupted by injected ADC conversion and a new conversion
from another channel (injected channel) is performed. Afterward, the ADC module
keeps performing its regular conversion. To note here, if the injection operation
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Fig. 7.6 Flowchart of the ADC module operating modes

starts in the middle of the regular ADC operation, then the present conversion value
is discarded. As the module returns to the previous operation after the injected mode,
a fresh conversion restarts for it.

Two ADC modules can work simultaneously or sequentially in master-slave
fashion to convert analog input or inputs. This is called dual mode which can be
used to increase the sampling rate of the ADC module or decrease the required time
to convert multiple channels. This operation requires DMA usage.
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Fig. 7.7 Injected channel conversion operation

7.2.3.4 ADC Interrupts
The ADC module can generate an interrupt either at the end of conversion or by
its analog watchdog property. These interrupts should be enabled separately by
their respective bits. The end of conversion interrupt is generated separately for the
regular or injected modes. Their corresponding callback functions are also separate.

The ADC result can be compared with two threshold values set as low and high
via the analog watchdog feature. This is done automatically after setting up the
ADC module. Hence, there is no need to run a separate code for the operation. If the
conversion is outside the threshold values, then an interrupt can be generated. This
operation is a sort of software configurable window comparator. The advantage of
this operation is that it does not need an analog reference voltage. The comparison
is done by the set threshold values.

7.2.3.5 Sampling and Clocks
We should use a clock signal to have periodic sampling as mentioned in Sect. 7.2.1.
The ADC module has its dedicated clock, ADCCLK, for this purpose. The
maximum clock speed for ADCCLK is 36 MHz.

The total conversion time for the ADC module is the sum of configured sampling
period plus SAR operation duration depending on data resolution. The sampling
period can be one of 3, 15, 28, 56, 84, 112, 144, or 480 ADC clock cycles. The
SAR operation duration is 15 ADC clock cycles for 12-bit data resolution. This
duration can be reduced to 13, 11, or 9 ADC clock cycles for 10-, 8-, and 6-bit
data resolutions, respectively. As a result, the ADC module can produce 2.4 mega
samples per second with 12-bit resolution. It is possible to go up to 4 mega samples
per second with lower (6-bit) resolution by setting the ADCCLK to work at 36 MHz.

7.2.3.6 Obtaining the ADC Operation Result
As the ADC operation ends, the conversion result is written to the ADC_DR or
ADC_JDRx register based on the regular or injected operation, respectively. These
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registers keep 16-bit data. Since the conversion result can be 12 to 6 bits, it should
be aligned to right or left by a dedicated register.

The alignment works differently for the regular and injected ADC operations.
For the right aligned result, zeros or sign bits are added as prefix for the regular
or injected operations, respectively. For the left aligned result, zeros are added as
suffix for the regular or injected operations. There is one exception here. If a 6-bit
conversion is performed, the first byte is not used in operation. The second byte is
filled with zeros as suffix for the regular conversion. This is also the case for injected
mode, in which the most significant bit in the second byte is kept for the sign of the
operation. As a side note, the injected mode can be used to obtain negative results.
For more information on this operation, please see [4].

7.3 ADC Setup in the STM32F4Microcontroller

We have seen that there are several options to perform the ADC operation in the
STM32F4 microcontroller. We will consider them in this section. To do so, we will
benefit from the available resources in C, C++, and MicroPython languages.

7.3.1 ADC Setup via C Language

We will benefit from STM32CubeMX to set up the ADC module properties in
C language. At this stage, we assume that a project has already been created in
STM32CubeIDE as given in Sect. 3.1.3. In order to set up ADC via the STM32F4
microcontroller, first open the “Device Configuration Tool” window by clicking the
“.ioc” file in the project explorer window. Then, click on one of ADC1, ADC2,
or ADC3 under the “Analog” section from the left menu of STM32CubeMX. Then,
configuration can be done in this section as shown in Fig. 7.8. We will provide details
of this operation next.

7.3.1.1 Setting Up Input Sources
If the internal temperature sensor, Vbat or Vrefint channel, will be selected as the
ADC input source, then enable the channel under the “Analog - ADCx” section as in
Fig. 7.9. Here, x can be 1, 2, or 3 to denote ADC1, ADC2, and ADC3, respectively.

If an external source will be connected to the ADC module, then click on
the GPIO pin with ADC input capability on the STM32F4 microcontroller in the
STM32CubeMX interface. Afterward, select the GPIO type as “ADCx_INy” in the
“Device Configuration Tool” window as in Fig. 7.10. To note here, y can be any
value between 0 and 15. Finally, enable the channel under the “Analog - ADCx”
section.

7.3.1.2 Setting Up OperatingModes
Once the input source is selected, ADCx settings can be configured from the opened
“Parameter Settings” tab in the “Configuration” menu as in Fig. 7.11. By default,
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Fig. 7.8 ADC configuration in STM32CubeMX

the ADC module is configured to work in single-shot conversion mode triggered
by software in 12-bit right aligned data mode. Data width can be selected as 12,
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Fig. 7.9 ADC mode menu in STM32CubeMX

10, 8, or 6 bits. Data alignment can be selected as left or right aligned from the
configuration menu.

We can enable the scan mode if more than one input channel is used in analog
to digital conversion. To do so, we should first select more than one input channel
as ADC input. The selected and configured pins should all belong to the same ADC
module such as ADC1_IN1 or ADC1_IN2. Then, the “Number of Conversion”
option under the “ADC_Regular_ConversionMode” setting should be set to the
number of selected input channels in the configuration menu as in Fig. 7.11.
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Fig. 7.10 ADC input source
configuration in
STM32CubeMX

Fig. 7.11 ADC configuration menu in STM32CubeMX
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Afterward, there will be multiple “Rank” options in the configuration menu and
the “Scan Conversion Mode” will be enabled automatically. In each rank option,
the channel number should be selected in the order that the conversion will occur.
The sampling time can be changed under the “Rank” options individually for each
channel.

The ADC will perform a single-shot conversion by default. If we would like to
perform continuous or discontinuous conversion, we should enable the “Continuous
Conversion Mode” or “Discontinuous Conversion Mode” in the configuration menu
as in Fig. 7.11. To note here, the discontinuous conversion mode can only be enabled
if the scan channel mode has been selected.

The analog watchdog can be enabled using the “Enable Analog Watchdog Mode”
option under watchdog settings in the configuration menu as in Fig. 7.11. Once the
analog watchdog is enabled, additional options will appear in the menu. Here, low
and high thresholds can be entered to the appropriate places in digital form. Also,
the watchdog interrupt can be enabled using the “Interrupt Mode” option in the same
settings.

The default ADC conversion is for regular conversion without injection. If
needed, the injected mode can be enabled by entering a nonzero value to the
“Number of Conversions” section under the “ADC_Injected_ConversionMode”
setting in the configuration menu as in Fig. 7.11. Once the injected mode is enabled
this way, additional options will appear in the configuration menu. Afterward, the
injection channel can be configured similar to a regular channel.

7.3.1.3 Setting Up ADC Interrupts
If the ADC interrupt is not required, then this step can be skipped. Otherwise, the
ADC interrupt should be enabled from the NVIC tab in the configuration menu
as in Fig. 7.11. The interrupt priority can be changed under the “System Core -
NVIC” section. To note here, it is suggested to lower the ADC interrupt priority
since the HAL library functions use the SysTick interrupt to create precise 1 ms
ticks for internal operations and the HAL_Delay function. The SysTick interrupt has
the highest priority among peripheral units. Hence, assigning a lower priority to the
ADC interrupt will not affect it. Otherwise, precision of the HAL_Delay function
may degrade.

7.3.1.4 Setting Up Triggers
The trigger source can be selected from the “External Trigger Conversion Source”
option under the “ADC_Regular_ConversionMode” setting in the configuration
menu as in Fig. 7.11. The default value for this setup is “Regular Conversion.” If
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a hardware trigger will be used, then one of the EXTI line 11 or timer source with
capture/compare or trigger out event options should be selected. To select the EXTI
line 11, the 11th pin of any port should be configured as “ADCx_EXTI11” on the
“Device Configuration Tool” window first. The trigger edge should also be selected
as rising, falling, or rising and falling edge from the “External Trigger Conversion
Edge” option under the configuration menu as in Fig. 7.11. If a timer will be used
for the triggering operation, then the corresponding timer and its output event should
be configured as explained in Sect. 6.3. Then, the trigger should be selected as the
respective timer event from the “External Trigger Conversion Edge” option under
the configuration menu as in Fig. 7.11.

7.3.1.5 Setting Up Clock Options
The last step is configuring the clock for the ADC module. Here, we assume that the
clock configuration for the STM32F4 microcontroller has been done as explained in
Chap. 6. We can set the ADC clock divider as 2, 4, 6, or 8 from the clock prescaler
option in the configuration menu as in Fig. 7.11. The clock configuration of the
microcontroller may not be suitable for the ADC module. For such cases, click on
the “Clock Configuration” tab on the top menu of the “Device Configuration Tool”
window. Then, click on the “Resolve Clock Issues” button to solve the problem.
The reader can also set the ADC clock and its source clocks manually to the desired
value in the same window.

7.3.2 ADC Setup via C++ Language

We can benefit from Mbed and available functions there to adjust the ADC module
properties in C++ language. To do so, we should first adjust ADC channels. This
can be done by the class AnalogIn. Usage of this class is similar to the DigitalIn
class introduced in Sect. 4.4.2. Therefore, we should supply a channel name to the
AnalogIn class. Optionally, a Vref value can be provided to the class. If this value
is not provided, then the AnalogIn class uses the default Vref source value.

Mbed does not support different ADC configurations. Therefore, we cannot use
the interrupt, hardware trigger, and injected mode options in it. In fact, we can
only use the ADC module in its default configuration which is the single-channel,
single-shot mode regular conversion with software trigger. We can indirectly realize
hardware trigger using other STM32F4 microcontroller peripheral units. As an
example, we can trigger the ADC module in a timer or GPIO callback function
to realize the hardware trigger. However, this mode should be used with care as the
ADC function used in the callback function blocks the code. Hence, it is better to set
a flag in the callback function and realize the ADC operation in the main function
based on the flag value.



172 7 Conversion Between Analog andDigital Values

7.3.3 ADC Setup via MicroPython

MicroPython has an ADC class to control the ADC module. The function
pyb.ADC(pin=pyb.Pin(’PinName’)) is used to create the ADC module. Here,
pin is the microcontroller pin which can be used as analog input. The PinName can
be entered as Pxy with x being the port name and y being the pin number.

7.4 ADC Usage in the STM32F4Microcontroller

As the ADC module properties are set, then we can use it for our specific purposes.
We will explore how this can be done in C, C++, and MicroPython languages in this
section. We will also provide examples related to ADC usage in these languages.

7.4.1 ADC Usage in C Language

The HAL library has special functions for the ADC operation after generating
the project under STM32CubeIDE. We explore these functions based on their
usage area next. Then, we provide usage examples for these functions on different
applications.

7.4.1.1 Starting and Stopping the Conversion Operation
The regular conversion process can be started by the function HAL_ADC_Start. If
interrupt generation is required after the conversion operation, then we should use
the function HAL_ADC_Start_IT. We can stop and disable the ADC module with
and without interrupt usage via functions HAL_ADC_Stop_IT and HAL_ADC_Stop,
respectively. Once the regular ADC conversion has started, then the code can
wait in a while loop (polled) using the function HAL_ADC_PollForConversion.
As the conversion is done, then the function terminates. Afterward, the
converted value can be read using the function HAL_ADC_GetValue. The
HAL_ADC_PollForConversion function can also be terminated by its declared
timeout value. In this setting, the conversion operation will not finalize. If the
analog watchdog is enabled, then the function HAL_ADC_PollForEvent can be
used to retrieve its status. We provide these functions in detail next.
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HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
/*
hadc: pointer to the ADC_HandleTypeDef struct
*/

HAL_StatusTypeDef HAL_ADC_Stop (ADC_HandleTypeDef *hadc)

HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)

HAL_StatusTypeDef HAL_ADC_Stop_IT (ADC_HandleTypeDef *hadc)

HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *
hadc, uint32_t Timeout)

/*
Timeout: Timeout value in milliseconds
*/

uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc)

HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef * hadc,
uint32_t EventType, uint32_t Timeout)

/*
EventType: the ADC event type. This parameter can be one of the

following values.
ADC_AWD_EVENT: Analog watchdog event.
ADC_OVR_EVENT: Overrun event.
*/

7.4.1.2 The Injected Conversion Operation
The injected conversion operation can be started by one of the functions:
HAL_ADCex_InjectedStart or HAL_ADCex_InjectedStart_IT. If the
injected conversion will be used without interrupt generation, then the
former function should be used. If interrupt generation is required after
the ADC operation, then the latter function should be used. In a similar
manner, the injected conversion can be stopped and disabled by functions
HAL_ADCex_InjectedStop or HAL_ADCex_InjectedStop_IT for regular-
and interrupt-based operations, respectively. Once the injected ADC conversion
has started, then the code can wait in a while loop (polled) using the
function HAL_ADCex_InjectedPollForConversion. As the conversion is
done, then the function terminates. Afterward, the converted value can
be read by the function HAL_ADCex_InjectedGetValue. The function
HAL_ADCex_InjectedPollForConversion can also be terminated by its declared
timeout value. In this setting, the conversion operation will not finalize. We next
provide detail of all these functions.

HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef *hadc
)

/*
hadc: pointer to the ADC_HandleTypeDef struct
*/

HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef *hadc)

HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef *
hadc)
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HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef *
hadc)

HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(
ADC_HandleTypeDef *hadc, uint32_t Timeout)

uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef *hadc,
uint32_t InjectedRank)

/*
InjectedRank: the converted ADC injected rank. This parameter can

be one of the following values:
ADC_INJECTED_RANK_1: Injected channel1 selected
ADC_INJECTED_RANK_2: Injected channel2 selected
ADC_INJECTED_RANK_3: Injected channel3 selected
ADC_INJECTED_RANK_4: Injected channel4 selected
*/

7.4.1.3 ADC Interrupt Usage
HAL library also handles ADC end of conversion interrupt generation. For
this purpose, we can start the regular or injected conversion operations by
the functionHAL_ADC_Start_IT. Then, we should use the callback functions
HAL_ADC_ConvCpltCallback or HAL_ADCex_InjectedConvCpltCallback,
respectively. If the analog watchdog and its interrupt are enabled, then the
function HAL_ADC_LevelOutOfWindowCallback is called. We should define
these functions within the “main.c” file in our project. To note here, these
functions are generated in weak form (without any content) automatically
under the “STM32F4xx_hal_adc.c” file when a project is created. This means
when the reader forgets defining the actual HAL_ADC_ConvCpltCallback or
HAL_ADCex_InjectedConvCpltCallback functions, the code still runs. When
the user defines his or her function, then these weak functions are ignored. We next
provide detail of these functions.

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
/*
hadc: pointer to the ADC_HandleTypeDef struct
*/

void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc)

void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef * hadc)

7.4.1.4 The ADCModule Usage Examples
We provide seven examples on the usage of HAL library ADC functions. The
first example, with the C code given in Listing 7.1, aims to familiarize the reader
with the setup and usage of the ADC module. Here, temperature of the STM32F4
microcontroller will be measured using its internal temperature sensor. The ADC1
module will be configured in single-shot mode with software trigger.
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Listing 7.1 Usage of the ADC module with internal channel in single-shot mode, the C code

/* USER CODE BEGIN PD */
#define VREF 3.00
#define V25 0.76
#define AVG_SLP 0.00205
/* USER CODE END PD */

/* USER CODE BEGIN PV */
float temperatureC = 0;
float temperatureV = 0;
uint16_t adcValue = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 1000);
adcValue = HAL_ADC_GetValue(&hadc1);

temperatureV = ((float)adcValue * VREF) / 4095;
temperatureC = ((temperatureV - V25) / AVG_SLP) + 25;

HAL_Delay(1000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In order to execute the code in Listing 7.1, create an empty project and enable the
internal temperature channel of the ADC1 module. As the project is compiled and
run, the temperature sensor output will be first converted to digital value and then
to Celsius degrees in an infinite loop. The reader can observe changing temperature
values by adding a breakpoint to the code.

The second example, with the C code given in Listing 7.2, aims to familiarize
the reader with the external ADC channels and hardware triggers. To do so, we
should connect a 10 k� potentiometer between ground, VDD, and PA5 pins of the
STM32F4 board. Also, we should connect an external push button in active high
pull-down configuration to pin PC11. Hence, we can use it as hardware trigger.

Listing 7.2 Usage of the ADC module with external channel in single-shot mode with hardware
trigger, the C code

/* USER CODE BEGIN PV */
uint16_t adcValue = 0;
float divRatio = 0.00;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_ADC_Start(&hadc2);
while (1)
{
HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
adcValue = HAL_ADC_GetValue(&hadc2);
divRatio = (float)adcValue / 4095;
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HAL_Delay(1000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

The hardware setup for the second example is given in Fig. 7.12. Here, ADC2
channel 5 will be configured as single-channel in single-shot mode and will be
triggered with EXTI_11 line using the button connected to pin PC11. In order to
execute the code in Listing 7.2, create an empty project. Then, configure pins PA5
and PC11 as ADC2_IN5 and ADC2_EXTI11, respectively. Afterward, configure
ADC2 channel 5 in single-shot mode. As pin PC11 is configured as EXTI line,
hardware trigger will be automatically selected. After the project is compiled and
run, the level of the potentiometer is calculated in the infinite loop when the onboard
button is pressed. The reader can observe different potentiometer levels by placing
a breakpoint to the delay line in the code.

In the third example, we repeat the second example by using a timer trigger
instead of push button as hardware trigger. To do so, we use the Timer 8 update
event as hardware trigger for ADC. We set the timer clock to 144 MHz and Timer
8 counter as 144. Hence, the ADC module is triggered with 1 MHz timer output.
We set the ADC clock to 36 MHz and sampling time to three cycles. Hence, the
ADC module can convert 2.4 mega samples per second. Also, we enable the end of
conversion interrupts. As all these settings are done, we add the callback function
given in Listing 7.3 to the code given in Listing 7.2. Within the code, we put the CPU

Fig. 7.12 Hardware connections for the second ADC module example
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to sleep mode while the microcontroller is in idle mode or during ADC conversion.
After the project is compiled and run, the ADC module will be triggered by Timer 8.
The reader can observe different potentiometer levels by placing a breakpoint to the
__NOP line in the callback function.

Listing 7.3 Usage of the ADC module with timer trigger and end of conversion interrupt, the C
code

/* USER CODE BEGIN PV */
uint16_t adcValue = 0;
float divRatio = 0.00;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
adcValue = HAL_ADC_GetValue(hadc);
divRatio = (float)adcValue / 4095;
__NOP();
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_ADC_Start_IT(&hadc2);
HAL_TIM_Base_Start(&htim8);
HAL_PWR_EnableSleepOnExit();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
/* USER CODE END 2 */

The fourth example, with the C code given in Listing 7.4, can be used to convert
multiple inputs to digital values continuously in an infinite loop. To do so, we should
connect two 10 k� potentiometers between ground, VDD, and pins PA5 and PC3
of the STM32F4 board as shown in Fig. 7.13.

Listing 7.4 Usage of ADC module with multiple channels in continuous mode, the C code

/* USER CODE BEGIN PD */
#define CONV_NUM 100
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t adcValue[CONV_NUM] = {0};
float divisionLvl5[CONV_NUM / 2] = {0};
float divisionLvl13[CONV_NUM / 2] = {0};
uint32_t counter = 0, ind = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_ADC_Start(&hadc1);
while (1)
{
if (counter < (CONV_NUM - 1))
{
HAL_ADC_PollForConversion(&hadc1, 1000);
adcValue[counter] = HAL_ADC_GetValue(&hadc1);
counter++;

HAL_ADC_PollForConversion(&hadc1, 1000);
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Fig. 7.13 Hardware connections for the fourth ADC module example

adcValue[counter] = HAL_ADC_GetValue(&hadc1);
counter++;
}
else
{
for (ind = 0; ind < CONV_NUM; ind += 2)
{
divisionLvl13[ind / 2] = (float)adcValue[ind] / 4095;
divisionLvl13[ind / 2 + 1] = (float)adcValue[ind + 1] / 4095;
}

HAL_ADC_Stop(&hadc1);
HAL_Delay(100);
}
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In Listing 7.4, ADC1 external channels 5 and 13 are configured as scan channel
in continuous mode and will be triggered by software. Also, the ADC clock will be
configured to 36 MHz. Hence, the sampling times will be configured as 480 cycles.
The converted values will be stored in the adcValue array.

In order to execute the code in Listing 7.4, create an empty project. Then, con-
figure pins PA5 and PC3 as ADC1_IN5 and ADC1_IN13, respectively. Afterward,
enable ADC1 channels 5 and 13. Then configure the ADC1 module to work in
scan channel continuous mode. Afterward, adjust the ADC clock to 36 MHz and
sampling time of each channel to 480 cycles. After the project is compiled and run,
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the level of potentiometers is calculated in infinite loop after 100 conversions are
done. The reader can observe different potentiometer levels by placing a breakpoint
to the delay line. The reader can also check that lowering the sampling times, such
as to three cycles, will cause a problem. To be able to work at such speeds, DMA
should be configured to gather data from the ADC.

In the fifth example, we repeat the fourth example with discontinuous mode. The
C code for this case is given in Listing 7.5. After the project is compiled and run,
the level of the potentiometers is calculated in the infinite loop after 100 conversions
are done. Here, the ADC is triggered after each channel instead of gathering all
conversion results with one trigger. The reader can observe different potentiometer
levels by placing a breakpoint to the delay line in the code.

Listing 7.5 Usage of the ADC module with multiple channels in discontinuous mode, the C code

/* USER CODE BEGIN PD */
#define CONV_NUM 100
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t adcValue[CONV_NUM] = {0};
float divisionLvl5[CONV_NUM / 2] = {0};
float divisionLvl13[CONV_NUM / 2] = {0};
uint32_t counter = 0, ind = 0;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (counter < (CONV_NUM - 1))
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 1000);
adcValue[counter] = HAL_ADC_GetValue(&hadc1);
counter++;

HAL_ADC_PollForConversion(&hadc1, 1000);
adcValue[counter] = HAL_ADC_GetValue(&hadc1);
counter++;

HAL_ADC_Stop(&hadc1);
}
else
{
for (ind = 0; ind < CONV_NUM; ind += 2)
{
divisionLvl13[ind / 2] = (float)adcValue[ind] / 4095;
divisionLvl13[ind / 2 + 1] = (float)adcValue[ind + 1] / 4095;
}

HAL_Delay(100);
}
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
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The sixth example aims to familiarize the reader with the analog watchdog
property. To do so, we repeat the second example in continuous mode and enable
the watchdog with low and high threshold levels as 512 and 3586, respectively.
We should also enable the end of conversion and watchdog interrupts and add the
callback functions given in Listing 7.6 to Listing 7.2.

Listing 7.6 Usage of the ADC module with analog watchdog property, the C code

/* USER CODE BEGIN PD */
#define CONV_NUM 100
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t adcValue[CONV_NUM] = {0};
uint16_t counter = 0, idx = 0;
uint32_t sum = 0;
float divRatio = 0;
uint8_t adcWatchdogFlag = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
adcValue[counter++] = HAL_ADC_GetValue(hadc);
if (counter == CONV_NUM)
{
HAL_ADC_Stop_IT(hadc);
}
}

void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc)
{
HAL_ADC_Stop_IT(hadc);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
adcWatchdogFlag = 1;
}
/* USER CODE END 0 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_ADC_Start_IT(&hadc1);
while (1)
{
if (adcWatchdogFlag)
{
adcWatchdogFlag = 0;
HAL_Delay(2000);
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
counter = 0;
HAL_ADC_Start_IT(&hadc1);
HAL_Delay(100);
}
else if (counter == CONV_NUM)
{
for (idx = 0; idx < CONV_NUM; idx++)
{
sum += adcValue[idx];
}
divRatio = (float)sum / (CONV_NUM * 4095);
sum = 0;
counter = 0;
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HAL_ADC_Start_IT(&hadc1);
HAL_Delay(100);
}

HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

After the project is compiled and run, ADC is triggered when the onboard
button is pressed. Once 100 conversions are done, obtained values are summed and
averaged in an infinite loop. If the analog value is above or below the threshold
levels, then the watchdog interrupt is triggered during the conversion operation.
Then, the variable adcWatchdogFlag is set and the onboard green LED connected
to pin PG13 is turned on in the watchdog callback function. The adcWatchdogFlag
is checked in the infinite loop in the main function. If this variable has been set in
the callback function, then the ADC is stopped and onboard green LED is turned
off after 2 s. The reader can observe different potentiometer levels by placing a
breakpoint to the delay line in the code. The reader can also observe working
principle of the analog watchdog property via this example.

The seventh example, with the C code given in Listing 7.7, adds injected
conversion to the third example. Here, we enable the internal temperature sensor
channel. Then, we enable the injected conversion and select the internal temperature
sensor. We also enable the hardware trigger for injected channels and connect a
push button in active high pull-down configuration to pin PA15 to use it as hardware
trigger. The hardware setup for the seventh example is given in Fig. 7.14.

Listing 7.7 Usage of the ADC module with injected conversion property, the C code

/* USER CODE BEGIN PD */
#define VREF 3.00
#define V25 0.76
#define AVG_SLP 0.00205
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint16_t adcValue = 0;
float divRatio = 0.00;

float temperatureC = 0;
float temperatureV = 0;
uint16_t adcInjValue = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
adcValue = HAL_ADC_GetValue(hadc);
divRatio = (float)adcValue / 4095;
__NOP();
}

void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef *hadc)
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{
adcInjValue = HAL_ADCEx_InjectedGetValue(hadc,

ADC_INJECTED_RANK_1);

temperatureV = ((float)adcInjValue * VREF) / 4095;
temperatureC = ((temperatureV - V25) / AVG_SLP) + 25;
__NOP();
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_ADC_Start_IT(&hadc1);
HAL_TIM_Base_Start(&htim8);
HAL_TIM_Base_Start(&htim1);
HAL_PWR_EnableSleepOnExit();

HAL_ADCEx_InjectedStart_IT(&hadc1);
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
/* USER CODE END 2 */

After the project is compiled and run, the ADC module is triggered via Timer 8.
When the push button is pressed, the injected channel is triggered. Hence, the ADC
module starts converting the internal channel. Afterward, the module continues
converting the regular channel. The reader can observe different potentiometer
levels by placing a breakpoint to the __NOP line in the regular end of conversion
callback function. The reader can also observe the temperature values by placing a
breakpoint to the __NOP line in the injected end of conversion callback function.

Fig. 7.14 Hardware connection for the seventh ADC module example
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7.4.2 ADC Usage in C++ Language

We can benefit from the available functions in Mbed to use the ADC module via
C++ language. Here, the AnalogIn class or one of the functions read, read_u16,
or read_voltage will be of help. The AnalogIn class and read function provide
a float value between 0 and 1.0. For example, if Vref is 3 V and the ADC input
voltage is 0.75 V, then the read value will be 0.25 with this function. Likewise,
the function read_voltage returns a float value representing the input voltage,
measured in volts. In order to use this function, we should set the reference voltage
beforehand using the function set_reference_voltage. This value is the same
as VDD for the STM32F4 board. The read_u16 function returns a value between 0
and 0xFFFF.

We next provide examples on the usage of the ADC module in Mbed. Our first
example, with the C++ code given in Listing 7.8, is on setting the ADC module. To
execute this code in Mbed Studio, we should copy and paste it to the “main.cpp”
file in our active project. As can be seen in Listing 7.8, the ADC module converts
the analog input connected to pin PA5 of the STM32F4 board and prints the result
to the terminal. It then sleeps for 1 s in the infinite loop. As a side note, the
platform.minimal-printf-enable-floating-point value should be set to
true within the json file of the Mbed project to print float numbers by the function
printf.

Listing 7.8 First example on the usage of the ADC module, the C++ code

/*
In mbed_app.json file below settings should be set to true in

order to print
floating numbers to console "platform.minimal-printf-enable-

floating -point"
*/

#include "mbed.h"

#define WAIT_TIME_MS 1000
AnalogIn aIn(PA_5);

int main()
{
float aInput, volt;
uint16_t dInput;

aIn.set_reference_voltage(3);

while (true)
{
dInput = aIn.read_u16();
aInput = aIn.read();
volt = aIn.read_voltage();

printf("digital: 0x%04X \n", dInput);
printf("normalized: %.6f \n", aInput);
printf("voltage: %.6f \n\n\n", volt);

thread_sleep_for(WAIT_TIME_MS);
}
}
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The second example, with the C++ code given in Listing 7.9, implements the first
example by using a timer interrupt. Hence, the ADC module is triggered indirectly
by hardware. As can be seen in Listing 7.9, the ADC converts the analog input
connected to pin PA5 of the STM32F4 board at each timer interrupt and stores the
result to the array divRatio. After 20 conversions, the timer interrupt is disabled by
the function HwADCTrigger.detach(). Then, the result is printed to the terminal
and CPU goes to sleep mode.

Listing 7.9 Second example on the usage of the ADC module, the C++ code

/*
In mbed_app.json file below settings should be set to true in

order to print
floating numbers to console "platform.minimal-printf-enable-

floating -point"
*/

#include "mbed.h"

#define CONV_NUM 20

Ticker adcTrigger;
AnalogIn aIn(PA_5);

float divRatio[CONV_NUM];
int cnt = 0, ind;
bool adcFlag = false;

void ADCTrigger()
{
adcFlag = true;
}

int main()
{
printf("ADC Conversion Started\n\n\n");

aIn.set_reference_voltage(3);
adcTrigger.attach(&ADCTrigger , 200ms);

while (true)
{

if (adcFlag && cnt < CONV_NUM)
{
adcFlag = false;
divRatio[cnt++] = aIn.read();
}

if (cnt >= CONV_NUM)
{
adcTrigger.detach();
for (ind = 0; ind < cnt; ind++)
{
printf("normalized: %.2f \n", divRatio[ind]);
}
}

sleep();
}
}
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The third example, with the C++ code given in Listing 7.10, shows how an inter-
nal channel can be used in the ADC operation. To do so, we benefit from the internal
temperature sensor of the STM32F4 microcontroller as intTemp(ADC_TEMP). As
the code runs, internal temperature of the STM32 microcontroller is obtained and
printed in an infinite loop every 0.1 s.

Listing 7.10 Third example on the usage of the ADC module, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 100

AnalogIn intTemp(ADC_TEMP);

int main()
{
while (true)
{
int value = intTemp.read_u16();
printf("Analog value read %u \n", (unsigned int)value);

thread_sleep_for(WAIT_TIME_MS);
}
}

7.4.3 ADC Usage in MicroPython

The function ADC.read() can be used to read analog value from a pin in 12-bit
resolution. The function ADC.read_timed(buf, timer) can be used to perform
multiple reads with a precise sampling rate. Here, conversion results will be stored
in the buf array. Size of this array determines the number of ADC conversions.
Sampling rate is set by the selected timer module. However, this is a blocking
function and code execution will be halted until ADC conversions are complete.
Hence, ADC conversions can be realized inside a timer callback function to perform
the non-blocking version of the same operation. Finally, read_core_temp(),
read_core_vbat(), read_vref(), and read_core_vref() functions can be
used to read internal temperature sensor, external battery, reference, and core refer-
ence voltage values, respectively. In order to use these functions, related ADC chan-
nels must be initialized beforehand by the function pyb.ADCAll(resolution,
mask). Here, resolution is the ADC resolution and mask is the value used to
select the desired ADC channel.

We next provide examples on the usage of the ADC module in MicroPython. In
the first example, ADC module converts the analog input connected to pin PA5 of
the STM32F4 board to respected voltage value. The result is printed on the terminal.
The MicroPython code for this example is given in Listing 7.11
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Listing 7.11 First example on the usage of the ADC module, the MicroPython code

import pyb

def main():
aIn = pyb.ADC(pyb.Pin(’PA5’))
while True:

dInput = aIn.read()
volt = 3.0 * dInput / 4095
print("digital:", dInput, "\n")
print("voltage:", volt, "\n\n\n")
pyb.delay(1000)

main()

In the second example, ADC conversion is triggered using timer interrupt in
non-blocking mode. ADC converts the analog input connected to pin PA5 of the
STM32F4 board at 200 ms sampling intervals and stores the results to the array
divRatio. After 20 conversions, the timer interrupt is disabled by the function
Timer1.deinit() and the results are printed to the terminal as voltage values.
The MicroPython code for this example is given in Listing 7.12.

Listing 7.12 Second example on the usage of the ADC module, the MicroPython code

import pyb
from array import array

CONV_NUM = const(20)
timer1 = pyb.Timer(1, freq=5, mode=pyb.Timer.UP)
divRatio = array(’I’, (0 for i in range(100)))
adcFlag = 0
printFlag = 0
cnt = 0

def ADCTrigger(timer):
global adcFlag
global cnt
global printFlag
adcFlag = 1
cnt = cnt + 1
if cnt >= CONV_NUM:

timer1.deinit()
printFlag = 1

def main():
global adcFlag
global cnt
global printFlag
aIn = pyb.ADC(pyb.Pin(’PA5’))
timer1.callback(ADCTrigger)
while True:

if (adcFlag == 1) and (cnt < CONV_NUM):
adcFlag = 0
divRatio[cnt] = aIn.read()

if printFlag == 1:
for ind in range(cnt):

print("voltage:", 3.0 * divRatio[ind] / 4095, "\n
")

printFlag = 0
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main()

In the third example, the ADC module is used to obtain the temperature value
from the internal temperature sensor of the STM32F4 microcontroller. Here, the
temperature is obtained in Celsius degrees and printed on the terminal in an infinite
loop every 0.1 s. The MicroPython code for this example is given in Listing 7.13.

Listing 7.13 Third example on the usage of the ADC module, the MicroPython code

import pyb

def main():
adcTemp = pyb.ADCAll(12, 0x70000)
while True:

value = adcTemp.read_core_temp()
print(value)
pyb.delay(100)

main()

7.5 Digital to Analog Conversion in Embedded Systems

Digital to analog conversion (DAC) aims to obtain the analog representation of a
given digital value. We will cover two methods to perform this operation. The first
method is called zero-order hold (ZOH) which can be performed if the embedded
system has a DAC module to be used for this purpose. The second method is based
on pulse width modulation (PWM). This method does not require any specific
module except the timer which should be available in most embedded systems.
Since the ZOH and PWM depend on physical hardware of the embedded system,
we will consider how these operations are done in the STM32F4 microcontroller in
a separate section.

7.5.1 Zero-Order Hold

The zero-order hold (ZOH) operation, performed by the DAC module, works by a
simple principle such that a constant voltage level is fed to output for a given digital
input value. This voltage is kept at output for a predefined time. When another digital
value comes to the DAC module, the output voltage changes accordingly. There
should be associated pins for the module within the embedded system to handle
analog voltage values.

We can explain working principles of the DAC module with the help of the
concepts introduced in the ADC module. The DAC module works in a certain
voltage range determined by Vref + in the STM32F4 microcontroller. The DAC
module has a 12-bit digital input. Hence, the STM32F4 microcontroller has a 12-
bit DAC module. When the minimum digital value (zero) is fed to it, output of the
module will be 0 V. Likewise, when the maximum digital value (2N − 1) is fed to
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Fig. 7.15 DAC transfer function

the DAC module, its output will be Vref + −� where � is given in Eq. 7.1. For other
digital input values, we can calculate the analog value from the DAC module as

Vout = � × d (7.4)

where d is the digital value fed to the DAC module. It is evident from Eq. 7.4 that
we have limited analog output values since d is digital. We schematically explained
these concepts in Fig. 7.15.

If we feed successive digital values to the DAC module, then we will have a
staircase like analog signal at output. We provide such a signal in Fig. 7.16. This
signal can be smoothed out further by a low-pass filter connected to output of the
DAC module.

7.5.2 PulseWidthModulation

The embedded system may not have a dedicated DAC module to convert a digital
value to analog form. For such cases, we can benefit from pulse width modulation
(PWM). PWM provides fixed amplitude pulses with varying width. These pulses
are formed periodically such that there is a base periodic signal composed of pulses
with constant amplitude, with value VDD , and varying width. The important point
here is that period of the base periodic signal is low. In other words, frequency of
this signal is high. When such a high-frequency signal is fed to an analog system,
it cannot detect such high-frequency changes. Instead, the analog system observes
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Fig. 7.16 DAC signal output example

the average voltage value within one period of the PWM signal. We can explain this
process as follows. The analog system may not respond to high-frequency changes.
Hence, it acts as a low-pass filter. As a result, we can change the effective voltage
value observed by the analog system by changing the pulse width.

We can formalize the analog voltage value, Vavg , obtained by PWM as

Vavg = ton

tperiod

× VDD = D × VDD (7.5)

where ton is the “on” duration of the pulse and tperiod is the period of the base signal.
The ratio, ton/tperiod , is called the duty cycle, D, of the PWM signal. This value

can be changed to obtain the desired analog voltage. To note here, tperiod will
be fixed for the analog system at hand such that it cannot detect high-frequency
changes. The ton value can be modified to change the duty cycle. We will see how
to modify both tperiod and ton values in the STM32F4 microcontroller in the next
section.

We provide three scenarios on obtaining different analog voltage values with
different duty cycles in Fig. 7.17. In this figure, a small portion of PWM signals
are provided. As can be seen in this figure, Vavg changes linearly with the selected
duty cycle. The duty cycle can also change on the fly. Hence, we can have a varying
analog voltage value at output.

We can generate three different PWM signals as left aligned, right aligned, and
centered. We provide them in Fig. 7.18. As can be seen in this figure, when the
signal is left aligned, it always starts with the VDD value in one period. The signal
then goes to 0 V after ton duration. When the signal is right aligned, it always starts
with 0 V within one period. Then, it goes to VDD and stays there for ton duration till
the end of period. Finally, we can have the centered PWM signal such that it always
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Fig. 7.17 PWM signals with different duty cycles

starts and ends with 0 V. Within the period, the signal goes to the VDD value and
stays there with ton duration.
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Fig. 7.18 Three different PWM alignment options

7.5.3 DAC Operation in the STM32F4Microcontroller

We will explore how the DAC operation can be performed by the STM32F4
microcontroller in this section. To do so, we will start with the DAC module
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Fig. 7.19 Block diagram of the DAC module

available in the microcontroller. Then, we will focus on PWM signal generation
by the timer module of the microcontroller.

7.5.3.1 The DACModule
There is one 12-bit buffered voltage output DAC module in the STM32F4 micro-
controller. General block diagram of this module is as in Fig. 7.19. As can be seen
in this figure, the DAC module has two output channels each with its own digital to
analog converter. There is an optional buffer at output of each channel. The output
impedance can be reduced by enabling it. Hence, higher loads can be driven by the
microcontroller without needing additional external components. The DAC module
can be configured either to 12- or 8-bit mode. The input can be left or right aligned
in the 12-bit mode.

DAC channels can be triggered with software or hardware. Hardware triggers can
be the EXTI_9 line which is connected to the ninth pin of the GPIO ports or timer
trigger out events. Please see the reference for which timers and timer channels can
trigger the DAC module [4].

7.5.3.2 PWM Signal Generation
The PWM signal can be generated by base timer modules of the STM32F4
microcontroller. To do so, we should use the PWM setup of these modules. In fact,
the PWM signal is generated using the compare mode of the base timer as explained
in detail in Sect. 6.2.2.

The base timer generates the PWM signal from its appropriate output channels as
follows. When the counter value in the base timer reaches 0, maximum, or compare
value defined for the channel, its output can be changed. This leads to PWM signal
generation based on PWM mode 1 and 2. When the base timer is counting up,
output is high, while the counter is lower than the compare value in PWM mode 1.
The output is low while the counter is higher than the compare value. This is just
the opposite in PWM mode 2.
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Table 7.1 PWM signal
frequency and duty cycle
formulas based on alignment

Alignment Frequency fPWM Duty cycle D

Left
fT imer

ARRx + 1

CCRx + 1

ARRx + 1

Center
fT imer

2 × (ARRx + 1)
1 − CCRx + 1

ARRx + 1

Right
fT imer

ARRx + 1
1 − CCRx + 1

ARRx + 1

We can explain this operation in more detail as follows. When PWM mode 1 is
selected and base counter is counting up, then the PWM signal at OCxREF is at
logic level 1 as long as TIMx_CNT < TIMx_CCRx. Else it becomes logic level
0. If the compare value in TIMx_CCRx is greater than the auto-reload value (in
TIMx_ARR), then OCxREF is held at logic level 1. If the compare value is 0, then
OCxREf is held at logic level 0. When PWM mode 1 is selected with the base
counter counting down, the reference signal OCxREF is at logic level 0 as long as
TIMx_CNT > TIMx_CCRx. Else, it becomes logic level 1. If the compare value in
TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then OCxREF is
held at logic level 1.

The PWM signal can be left or right aligned (in edge) or in centered mode. In
the left edge aligned mode and the timer counting in upward direction, the rising
edge occurs when the counter value resets to 0 and falling edge occurs when the
counter value reaches the compare value. In the right edge aligned mode, the rising
edge occurs when the counter value reaches the compare value, and falling edge
occurs when the counter value reaches the maximum count. In the centered mode,
timer can count only in up/down mode. Here, rising and falling edges both occur
when the counter value reaches the compare value. In PWM mode 1 and centered
mode, falling edge occurs while the counter is counting in the upward direction, and
falling edge occurs while in downward direction. In addition to these modes, output
polarity for the signal can be selected. For more information on this option, please
see [4].

Based on the alignment of the PWM signal, we can obtain different frequency
and duty cycle values. We tabulate these in Table 7.1. In this table, ARRx is the
auto-reload and CCRx is the compare value of the base timer. For fT imer , please
see Sect. 6.2.1.

7.6 DAC Setup in the STM32F4Microcontroller

As explained in previous sections, we can generate analog voltage from the
STM32F4 microcontroller either by using the DAC module or PWM signal. We
will consider how these can be done in C, C++, and MicroPython languages in this
section. Let’s start with the C language-based setup.
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7.6.1 DAC Setup via C Language

DAC setup via C language is based on STM32CubeMX usage with the support
of available HAL library functions. This gives us freedom in setting up the DAC
module and generating the PWM signal. Next, we consider these two options in
separate sections.

7.6.1.1 DACModule Setup
We assume a project has already been formed and ready to be modified under
STM32CubeMX for the DAC module usage. To configure the DAC module, click
on the GPIO pin with DAC output capability on the STM32F4 microcontroller and
select the GPIO type as “DAC_Outy” on the “Device Configuration Tool” window
as in Fig. 7.20. To note here, y can be 1 or 2. Afterward, enable the channel using
one of “OUT1 Configuration” or “OUT2 Configuration” option under the “Analog-
DAC” section as in Fig. 7.21. Once the output pin and channel is configured,
DAC settings can be configured from the opened “Parameter Settings” tab in the
“Configuration” menu in the same section as in Fig. 7.22.

Fig. 7.20 DAC output
source configuration in
STM32CubeMX
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Fig. 7.21 DAC mode menu in STM32CubeMX

Fig. 7.22 DAC configuration menu in STM32CubeMX

The output buffer can be enabled or disabled using the “Output Buffer” option in
the configuration menu. The DAC trigger should also be selected from the “Trigger”
option in the configuration menu. If a software trigger will be used, then “Software
Trigger” should be selected from “Trigger” option in configuration menu as in
Fig. 7.22. If a hardware trigger will be used, then the EXTI line 9 or timer source
with “Trigger Out” event should be selected from “Trigger” option in configuration
menu as in Fig. 7.22. To select the EXTI line 9, the ninth pin of any port should
be configured as “DAC_EXTI9” on the “Device Configuration Tool” window first.
Then, the trigger should be selected as “External line 9” from the “Trigger” option
under the configuration menu as in Fig. 7.22. If a timer will be used as hardware
trigger, then the timer and its output event should be configured first as explained
in Sect. 6.3. Then, the trigger should be selected as respective timer event from the
“Trigger” option under the configuration menu.

7.6.1.2 PWM Signal Setup
We can use STM32CubeMX to configure the PWM signal. Here, we assume that
a project has already been created beforehand as explained in Chap. 3. Then, click
on the GPIO pin with timer output capability on the STM32F4 microcontroller and
select the GPIO type as “TIMx_CHy” on the “Device Configuration Tool” window
as in Fig. 7.23. To note here, x can be 1 to 5 or 8 to 14 and y can be any value
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Fig. 7.23 PWM output
configuration in
STM32CubeMX

Fig. 7.24 PWM mode selection in STM32CubeMX

between 1 and 4 depending on the timer. Afterward, enable the channel using the
“PWM Generation CHy” option under the “Timers - TIMx” section as in Fig. 7.24.

We should configure the timer clock first as explained in detail in Sect. 6.3. Once
the output pin, channel, and clock are configured, PWM settings can be configured
from the opened “Parameter Settings” tab in the “Configuration” menu in the same
section as in Fig. 7.25. Here, we can divide the timer clock using the internal
clock divider option. We should set the counter mode as up or down. Then, we
should select the period and duty cycle using the counter period and pulse in the
“Configuration” menu as in Fig. 7.25. PWM mode and output polarity can also be
selected from the same menu.
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Fig. 7.25 PWM configuration settings in STM32CubeMX

7.6.2 DAC Setup via C++ Language

We can benefit from Mbed and available functions there to adjust the DAC module
and PWM signal properties. In order to set up the DAC module, we should first
adjust the related DAC pins. This can be done by the class AnalogOut. Usage of this
class is similar to the class definition AnalogIn introduced in Sect. 7.3.2. We should
supply a pin name we would like to use to this class. Afterward, the analog value can
be set using the class AnalogOut or one of the functions write or write_u16. The
AnalogOut class and write function sets a float value between 0 and 1.0. As an
example, if the reference voltage value is 3 V and we want to set the output voltage
to 0.75 V, then the value within these functions will be 0.75/3 = 0.25. The function
write_u16 sets value between 0 and 0xFFFF. Here, 0xFFFF corresponds to Vref +.
Therefore, we should use 0x8000 in the function if we want to get an output voltage
Vref +/2.

In order to set up the PWM signal, we should first adjust the related pins. This
can be done by the class PwmOut. We should supply a pin name for this class.
Afterward, the period of PWM signal should be set using one of the functions
period, period_ms, or period_us. These functions set the period in seconds,
milliseconds, and microseconds, respectively. Duty cycle of the PWM signal can be
set using the class PwmOut or one of the functions pulsewidth, pulsewidth_ms,
or pulsewidth_us. Here, the PwmOut class and the function pulsewidth set
the duty cycle in seconds. The function pulsewidth_ms sets the duty cycle in
milliseconds. The function pulsewidth_us sets the duty cycle in microseconds.
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7.6.3 DAC Setup via MicroPython

MicroPython has the DAC class to control the DAC module. The function
pyb.DAC(port, bits=DACbits, buffering=DACbuffer) can be used to
initialize the DAC module. Here, port is the predefined DAC output pin and
can be selected as 1 or 2 to use pin PA4 or PA5 as DAC output, respectively.
DACbits is used to set the resolution of the DAC module. This value can be 8 or 12
for the related resolution. DACbuffer is used to enable or disable the output buffer
by setting it to True or False, respectively. Unfortunately, the DAC module is not
enabled in the MicroPython firmware given in the official web site. Therefore, the
reader should use the firmware provided in the accompanying book web site.

PWM signal is generated using the timer module in MicroPython. To do so, the
desired timer module must be initialized first using the function pyb.Timer(id,
freq). Here, id is the timer module number and freq is the frequency
of the PWM signal. Then, the function channel(channel, mode, pin,
pulse_width_percent) can be used to generate the PWM signal. Here, channel
is the timer channel number which will be used to generate the PWM signal. mode
is the timer mode and must be selected as pyb.Timer.PWM. pin is the STM32F4
microcontroller pin the timer channel is connected to. pulse_width_percent is
the duty cycle of the PWM signal.

7.7 DAC Usage in the STM32F4Microcontroller

As the DAC module or PWM signal is set up, then we can use them for our specific
purposes. Here, we provide how to do this in C, C++, and MicroPython languages.
We also provide examples on sample usage scenarios.

7.7.1 DAC Usage in C Language

We handle the DAC usage in C language in two separate parts based on the DAC
module and PWM signal generation. For both cases, we benefit from the available
HAL library functions. We also provide usage examples on DAC usage in this
section.

7.7.1.1 DACModule Usage
HAL library has special functions to handle the DAC module. Here, we will only
mention the general DAC usage in an infinite loop. The DAC output value can be
set using the function HAL_DAC_SetValue. The regular conversion operation can
be started using the function HAL_DAC_Start. The DAC module can be stopped
and disabled using the function HAL_DAC_Stop. There is no conversion interrupt
function for DAC. However, we can use the GPIO or timer interrupt to set the output
value while using the DAC module with hardware triggers. We provide detailed
information on all these functions next.
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HAL_StatusTypeDef HAL_DAC_Start (DAC_HandleTypeDef * hdac,
uint32_t Channel)

/*
hdac: pointer to a DAC_HandleTypeDef struct
Channel: the selected DAC channel and can be one of the following

values
DAC_CHANNEL_1: DAC Channel1 selected
DAC_CHANNEL_2: DAC Channel2 selected
*/

HAL_StatusTypeDef HAL_DAC_Stop (DAC_HandleTypeDef * hdac,
uint32_t Channel)

HAL_StatusTypeDef HAL_DAC_SetValue (DAC_HandleTypeDef * hdac,
uint32_t Channel, uint32_t Alignment, uint32_t Data)

/*
Alignment: specifies the data alignment and can be one of the

following values.
DAC_ALIGN_8B_R: 8bit right data alignment selected
DAC_ALIGN_12B_L: 12bit left data alignment selected
DAC_ALIGN_12B_R: 12bit right data alignment selected
Data: to be loaded in the selected data holding register
*/

7.7.1.2 PWM Signal Usage
HAL library also has special functions to handle PWM signal generation. Here,
we will only mention general PWM usage in an infinite loop. The PWM output
can be enabled using the function HAL_TIM_PWM_Start.The PWM output can be
stopped and disabled using the function HAL_TIM_PWM_Stop. The duty cycle can
be set using the CCRx value which can be accessed while the timer is running.
This can be done using the macro __HAL_TIM_SET_COMPARE. We provide detailed
information on all these functions next.

HAL_StatusTypeDef HAL_TIM_PWM_Start (TIM_HandleTypeDef * htim,
uint32_t Channel)

/*
htim: pointer to a TIM_HandleTypeDef struct
Channel: TIM Channels to be enabled This parameter can be one of

the following values:
TIM_CHANNEL_1: TIM Channel 1 selected
TIM_CHANNEL_2: TIM Channel 2 selected
TIM_CHANNEL_3: TIM Channel 3 selected
TIM_CHANNEL_4: TIM Channel 4 selected
*/

HAL_StatusTypeDef HAL_TIM_PWM_Stop (TIM_HandleTypeDef * htim,
uint32_t Channel)

__HAL_TIM_SET_COMPARE(__HANDLE__ , __CHANNEL__ , __COMPARE__)
/*
__HANDLE__: pointer to a TIM_HandleTypeDef struct
__CHANNEL__: TIM Channels to be enabled This parameter can be one

of the following values:
__COMPARE__: specifies the Capture Compare register (CCRx) new

value.
*/
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7.7.1.3 DAC Usage Examples
We provide three examples on the usage of DAC functions. The first example, with
the C code given in Listing 7.14, aims to familiarize the reader with the setup and
usage of the DAC module. Within the code, the DAC operation is triggered with
software in an infinite loop. In order to execute the code in Listing 7.14, create an
empty project and configure pin PA5 as DAC_OUT2. Afterward, enable the buffer
and select the software trigger. As the project is compiled and run, brightness of the
LED (connected to pin PA5) will change every second.

Listing 7.14 Usage of DAC module with software trigger, the C code

/* USER CODE BEGIN PV */
uint32_t i = 2048;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
i += 128;
if (i > 4095)
i = 2048;

HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2 , DAC_ALIGN_12B_R , i);
HAL_DAC_Start(&hdac, DAC_CHANNEL_2);
HAL_Delay(1000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

To execute the code in Listing 7.14, we should connect an external LED
and resistor between ground and pin PA5 of the STM32F4 board. The hardware
connections are as in Fig. 7.26.

In the second example, we repeat the first example. This time we use a push
button as hardware trigger instead of software trigger. The C code for this example
is given in Listing 7.15. In addition to the external LED connected to pin PA5, we
should also connect a push button in active high pull-down configuration to pin PG9
and use it as hardware trigger.

Listing 7.15 Usage of the DAC module with GPIO hardware trigger, the C code

/* USER CODE BEGIN PV */
uint32_t i = 2048;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
i += 128;
if (i > 4095)
i = 2048;
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2 , DAC_ALIGN_12B_R , i);
}
/* USER CODE END 0 */
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Fig. 7.26 Hardware connections for the first DAC example

/* USER CODE BEGIN 2 */
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2 , DAC_ALIGN_12B_R , i);
HAL_DAC_Start(&hdac, DAC_CHANNEL_2);

HAL_PWR_EnableSleepOnExit();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
/* USER CODE END 2 */

The hardware setup for the second example is as in Fig. 7.27. In order to execute
the code in Listing 7.15, create an empty project. Then, configure pin PA5 as
DAC_OUT2 and pin PG9 as DAC_EXTI9. Afterward, enable the buffer and select
the trigger as external line 9. Finally, enable the EXTI line[9:5] interrupt under
NVIC. As the project is compiled and run, brightness of the LED can be changed
by every button press.

In the third example, we repeat the first example by using a timer update event as
hardware trigger instead of software trigger. The C code for this example is given in
Listing 7.16. In order to execute the code in Listing 7.16, create an empty project.
Then, configure pin PA5 as DAC_OUT2. Afterward, enable the buffer and select
the trigger as “Timer 6 Trigger Out” event. Finally, configure Timer 6 to generate an
update event at every second and enable TIM6 interrupt under NVIC. As the project
is compiled and run, brightness of the LED can be changed every second without
CPU intervention.



202 7 Conversion Between Analog andDigital Values

Fig. 7.27 Hardware connections for the second DAC example

Listing 7.16 Usage of the DAC module with timer trigger, the C code

/* USER CODE BEGIN PV */
uint32_t i = 2048;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
i += 128;
if (i > 4095)
i = 2048;
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2 , DAC_ALIGN_12B_R , i);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim6);
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_2 , DAC_ALIGN_12B_R , i);
HAL_DAC_Start(&hdac, DAC_CHANNEL_2);

HAL_PWR_EnableSleepOnExit();
HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON , PWR_SLEEPENTRY_WFI);
/* USER CODE END 2 */

We next provide an example on PWM signal generation. To do so, we should
connect an external LED and resistor between the ground and PE5 pins of the
STM32F4 board as shown in Fig. 7.28. The C code for this example is given in
Listing 7.17. In order to execute the code, create an empty project. Then, configure
pin PE5 as TIM8_CH3. Afterward, configure the timer clock to 48 MHz, set the
prescaler 0, and counter period to 255. Hence, the generated PWM signal frequency
will be 187.5 kHz. As the project is compiled and run, brightness of the LED will
change every second.
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Fig. 7.28 Hardware setup for the PWM signal generation example

Listing 7.17 PWM signal generation, the C code

/* USER CODE BEGIN PV */
uint32_t i = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim9, TIM_CHANNEL_1);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
i += 16;
if (i > 0xFF)
i = 0;

__HAL_TIM_SET_COMPARE(&htim9, TIM_CHANNEL_1 , i);

HAL_Delay(1000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
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7.7.2 DAC Usage in C++ Language

We next provide examples on the usage of DAC module and PWM signal generation
in Mbed. We repeat the example given in Listing 7.14 in Mbed using AnalogOut
and PwmOut classes in Listings 7.18 and 7.19, respectively. To note here, we set the
PWM signal period to 256 μs in Listing 7.19 for simplicity. To execute each code
in Mbed Studio, we should copy and paste it to the “main.cpp” file in our active
project.

Listing 7.18 Analog out example, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 1000

AnalogOut dacOut(PA_5);
uint32_t i = 0x8000;

int main()
{
while (true)
{
i += 2048;
if (i > 0xFFFF)
i = 0x8000;
dacOut.write_u16(i);

thread_sleep_for(WAIT_TIME_MS);
}
}

Listing 7.19 PWM out example, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 1000

PwmOut pwmOut(PC_8);
uint32_t i = 0;

int main()
{
pwmOut.period_us(256);

while (true)
{
i += 16;
if (i > 0XFF)
i = 0;
pwmOut.pulsewidth_us(i);

thread_sleep_for(WAIT_TIME_MS);
}
}

We next provide an example on the usage of the ticker module to trigger the DAC
module. Here, voltage values for a sinusoidal signal with 128 elements are created.
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Then, this array is fed to the DAC output with 8 Hz frequency. Hence, frequency
of the sinusoidal signal will be 8/128 Hz. Again, the output can be observed by
connecting a multimeter to pin PA5. We provide the corresponding C++ code in
Listing 7.20

Listing 7.20 Triggering the DAC module by the ticker module, the C++ code

#include "mbed.h"

#define PI 3.14159265358979323846

Ticker timerTicker;
AnalogOut dacOut(PA_5);

float sineVoltages[128];
int dacFlag = 0;

void setDAC()
{
dacFlag = 1;
}

int main()
{
int i;
timerTicker.attach(&setDAC, 125ms);
for (i = 0; i < 128; i++)
{
sineVoltages[i] = 1.65 + 1.65 * sin(2 * PI * i / 128);
}
i = 0;

while (true)
{
if (dacFlag == 1)
{
dacOut.write(sineVoltages[i] / 3.3);
i++;
if (i == 128)
i = 0;
dacFlag = 0;
}
}
}

7.7.3 DAC Usage in MicroPython

The function DAC.write(value) can be used to feed analog value from a selected
pin in MicroPython. Here, value can be selected between 0 and 255 if the DAC
resolution is set to 8 bits. It can be selected between 0 and 4095 if the DAC resolution
is set to 12 bits. DAC output can also be generated using DMA with the function
DAC.write_timed(data, freq, mode). Here, data is the array that holds DAC
values. freq is the frequency of the DAC module and Timer 6 is automatically used
to create this frequency. mode is the DMA mode (to be explained in Chap. 9) and
can be selected as DAC.NORMAL or DAC.CIRCULAR.
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We provide three examples on the usage of DAC operation and PWM signal
generation in MicroPython. In the first example, the DAC module is used to generate
analog voltage at pin PA5. Initially, voltage of the DAC output is set to 1.5 V. Then,
it is increased by approximately 0.094 V every second. If the output voltage reaches
3 V, then it is reset to 1.5 V again. Output of the DAC module can be observed by
a LED connected to pin PA5. The MicroPython code for this example is given in
Listing 7.21.

Listing 7.21 Analog output example, the MicroPython code

import pyb

def main():
i = 2048

dacOut = pyb.DAC(2, bits=12, buffering=True)

while True:
i = i + 128
if i > 4095:

i = 2048
dacOut.write(i)
pyb.delay(1000)

main()

In the second example, a PWM signal is fed from pin PC8. Channel3 of Timer 3
is connected to pin PC8. Hence, it is configured to generate 1 kHz PWM signal
with initial duty cycle equal to zero. Then, the duty cycle is increased by 1%
every second. The output can be observed by connecting an LED to pin PC8. The
MicroPython code for this example is given in Listing 7.22.

Listing 7.22 PWM output example, the MicroPython code

import pyb

def main():
i = 0

timer3 = pyb.Timer(3, freq=1000)
timer3Ch3 = timer3.channel(

3, pyb.Timer.PWM, pin=pyb.Pin.board.PC8,
pulse_width_percent=0)

while True:
i = i + 1
if i > 100:

i = 0
timer3Ch3.pulse_width_percent(i)
pyb.delay(1000)

main()

In the third example, the DAC module is used with DMA to generate a sine wave
at pin PA5 in circular mode. Here, the sine wave is created with 128 elements for one
period. Amplitude of the sine wave changes between 0 and 3 V. The DAC module
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is triggered with 8 Hz via Timer 2. Hence, 128 element output (in one period)
is given to output in 16 s and frequency of sine wave is 1/16 Hz. Finally, these
values are converted to analog voltage and fed to output using the DMA module in
circular mode. The output can be observed by connecting an LED to pin PA5. The
MicroPython code for this example is given in Listing 7.23.

Listing 7.23 Triggering the DAC module by the timer module, the MicroPython code

import pyb

from array import array
from math import pi, sin

def convertDACVoltage2Value(voltage):
value = int(4095 * voltage / 3.0)
return value

def main():
sineVoltages = array(’f’, 1.5 + 1.5 * sin(2 * pi * i / 128)

for i in range(128))
DACValues = array(’H’, (0 for i in range(128)))

for i in range(len(DACValues)):
DACValues[i] = convertDACVoltage2Value(sineVoltages[i])

dacOut = pyb.DAC(2, bits=12, buffering=True)
dacOut.write_timed(DACValues, pyb.Timer(2, freq=8), mode=

dacOut.CIRCULAR)

main()

7.8 Application: ADC and DAC Operations in the Robot
Vacuum Cleaner

In this chapter, we perform battery level measurement and display and distance
sensing and control the speed and sweep rate of our robot via ADC, DAC, and PWM
modules. To do so, we use the ADC module to measure the battery level of the robot.
We use the DAC module to display the measured value on an LED bar. We use PWM
to control the speed of the motors connected to wheels of the robot. Likewise, we
benefit from PWM to adjust the sweeping rate in different modes. Finally, we add
an analog distance sensor in front of the robot to check possible obstacles. This
will lead to controlling the speed of the robot. We provided the equipment list,
circuit diagram, detailed explanation of design specifications, and peripheral unit
settings in a separate document in the folder "Chapter7\EoC_applications"
of the accompanying supplementary material. In the same folder, we also provided
the complete C, C++, and MicroPython codes for the application.
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7.9 Summary of the Chapter

Digital input and output concepts introduced in Chap. 4 are valuable in interacting of
the microcontroller by the outside world. However, this interaction can be expanded
further by adding analog signal processing capability to the microcontroller. We
introduced how such an operation can be done in this chapter. Therefore, we
started with the in-depth explanation of analog and digital values. Then, we focused
on the steps applied in the analog to digital conversion operation. Hence, the
embedded system can convert the input analog value to the corresponding digital
value. Afterward, we introduced the ADC module in the STM32F4 microcontroller
as a representative of such modules in embedded systems. We also provided the
setup and usage examples of this module in C, C++, and MicroPython languages.
We next covered the digital to analog conversion operation. Hence, the embedded
system can convert the digital input value to the corresponding analog value. We
introduced the DAC module in the STM32F4 microcontroller and PWM method to
perform this operation in the STM32F4 microcontroller as a representative of such
modules in embedded systems. We also provided the setup and usage examples of
the DAC module and PWM in C, C++, and MicroPython languages. We expanded
our previously introduced real-world example by adding ADC and DAC modules
to it as the end of chapter application. As microcontrollers become more powerful,
they have been used in processing analog signals. Hence, understanding how ADC
and DAC modules can be used in such applications is extremely important. The
concepts introduced in this chapter form a foundation for such usages.

Problems

7.1. Why cannot an analog value be processed in a digital system?

7.2. Summarize data types in C and C++ languages with their range (specific to the
Arm® Cortex™-M microcontroller).

7.3. Explain the sampling theorem (or Nyquist-Shannon sampling theorem) in
mathematical terms.

7.4. Assume that analog voltage values 0.128, 0.2, and 2.753 V are fed to the ADC
module in the STM32F4 microcontroller with Vref + = 3.3 V. What will be the
quantized output value for each analog input voltage?

7.5. How does SAR work in the ADC module of the STM32F4 microcontroller?

7.6. Design a system that controls its own supply with the STM32F4 microcon-
troller. The VDD pin of the microcontroller will be regulated and kept constant by a
voltage regulator with 3 V output. Input of the voltage regulator will be fed from
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more than one source. Switching and connection between sources will be done
by controllable switching elements (such as power multiplexer or analog switch
IC). Controllable switching elements can be controlled with GPIO pins. The first
source will be a rechargeable battery with a nominal 3.7 V output. The output of the
battery can vary between 3.3 and 4.1 V. The second source will be a solar panel with
maximum 5 V output. The panel output can vary between 0 and 5 V. The setup for
the system will be as follows. If the solar panel has an output voltage higher than
3.3 V, then the voltage regulator will be connected to the solar panel using the first
controllable switching element. If the solar panel has an output voltage less than
3.3 V, then the voltage regulator will be connected to the battery using the second
controllable switching element. If the output voltage of the solar panel is higher
than the voltage of the battery, then the battery will be connected to the solar panel
using a third controllable switching element. The green and red LEDs connected to
pins PG13 and PG14 of the STM32F4 board will indicate the source the system is
fed. When the green LED is on, this indicates that the STM32F4 microcontroller is
powered by the solar panel and battery is not charged. When the red LED is on, this
indicates that the STM32F4 microcontroller is powered by the battery only. When
both LEDs are on, this indicates that the STM32F4 microcontroller is powered by
the solar panel and battery is charged. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

7.7. Form a project with the following specifications. Every time the user button on
the STM32F4 board is pressed, temperature value should read from the STM32F4
microcontroller. Use the appropriate ADC module in operation. Add power man-
agement option to your solution such that the STM32F4 microcontroller waits in an
appropriate low power mode when not used. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

7.8. Modify the project in Problem 7.7 such that the temperature reading operation
is done in every 10 s. Use an appropriate timer module in operation.

7.9. Form a project with the following specifications. Every time the button
connected to pin PC11 is pressed, the voltage value at pin PA5 should be read
from the STM32F4 microcontroller. The voltage there is formed by a voltage
source and voltage divider circuit. The voltage divider is formed by a potentiometer
as shown in Fig. 7.12. Hence, the pin gets voltage values between 0 and 3.3 V.
Use the appropriate ADC module and ADC interrupt in operation. Add power
management option to your solution such that the STM32F4 microcontroller waits
in an appropriate low power mode when not used. Form the project using:
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(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

7.10. Design a musical tone generator using the STM32F4 microcontroller with
the following specifications. There should be a function which generates the note
using sine waves for a given duration. Then, the main function should play the notes
sequentially as C4, D4, E4, F4, G4, A4, and B4 for three seconds each. Use Timers
and DAC modules for this operation. Note: The frequencies are 261.6 Hz, 293.6 Hz,
329.6 Hz, 349.2 Hz, 392.0 Hz, 440.0 Hz, and 493.8 Hz for notes C4, D4, E4, F4, G4,
A4, and B4, respectively. The given frequency values can be generated up to 10%
error. You can use a 3 V piezo buzzer to generate a tone signal. You can use pin PA4
pin of the STM32F4 microcontroller to connect the buzzer. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

7.11. Add a new module to Problem 7.9 such that the LED, connected to pin PE5
of the STM32F4 microcontroller as shown in Fig. 7.28, will change its brightness
proportional or inversely proportional to the input voltage level. Use the PWM mode
separately for this operation. Every time the user button on the STM32F4 board is
pressed, direction will be changed. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.
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8Digital Communication

8.1 Background on Digital Communication

There are several definitions used in digital communication. Therefore, we provide
them as background in this section. We will use these definitions in the following
sections to explain working principles of a selected digital communication type.

8.1.1 Data, Frame, and Field

We will start with the definitions based on the transmitted data and related concepts.
We should first mention that some definitions may have different meanings for
different digital communication types. Hence, there is no unique definition which
can be applied to all digital communication types. In order to reach a consensus
and explain digital communication concepts more coherently, we pick the most
reasonable ones in this section and use them as they are from this point on.

We will call the message to be transmitted as data. This can be 1 byte or 1
kilobyte. Due to the used communication type, we may not be able to transmit data
at once. Hence, it should be segmented. Each segment will be called data chunk.

All digital communication types, to be explained in this chapter, have their own
standards while transmitting data. In general, we can call the structure, containing
data and other supplementary bits, transmitted to the receiver as frame (also called
packet). We will extensively use the frame definition in this book.
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Fig. 8.1 Generic example explaining data and related concepts

Bits and bytes within one frame are grouped. We call each group as field. As
an example, I2C has start, address, read/write, data, and stop fields. A field can be
formed by 1, 8, 32, or 1024 bits. This depends on the digital communication type.
As a side note, a field formed by 1 bit is simply called bit. For example, instead of
the start field composed of 1 bit, we will use the start bit naming instead.

We next provide a generic example in Fig. 8.1 to explain the concepts introduced
in this section. Here, we transfer the characters “STM” represented in ASCII format
by a pseudo digital communication method. As can be seen in this figure, we have
data, data chunks, frames, and fields.

8.1.2 Serial and Parallel Data Transfer

There are two different data transfer types as parallel and serial. Parallel data transfer
is used to achieve high transfer speeds. One such application is receiving data from
a digital camera or feeding data to an LCD. We will use both operations in the
following chapters. The disadvantage of parallel data transfer is that it requires
several pins to operate. Serial data transfer provides an alternative such that it only
needs one or two pins. This allows communicating with more than one device at
the same time. The disadvantage of serial data transfer is that it is slow since data
should be transmitted sequentially. We provide a simple demonstration to explain
the parallel and serial data transfer in Fig. 8.2. Here, we transfer 8 bits in serial and
parallel form.

8.1.3 Synchronous and Asynchronous Data Transfer

Data transfer in digital communication can be synchronous or asynchronous. In
synchronous data transfer, the transmitter and receiver are synchronized by a
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Fig. 8.2 Parallel and serial data transfer

common clock signal. This synchronization signal can be sent along with data. The
asynchronous data transfer does not need such a synchronization signal. Instead,
start and stop bits for each data packet are sent. However, the transmitter and receiver
should know and agree upon the transfer speed beforehand.

We provide a simple demonstration to explain the synchronous and asynchronous
data transfer in Fig. 8.3. Here, we transfer data between devices 1 and 2 via
pins Tx, Rx, and Clk. The Clk pin carries the common clock signal between the
transmitter and receiver. In the first setting, there is no Clk connection, or common
clock, between both devices. Hence, asynchronous data transfer is achieved. In the
second setting, there is a common clock signal carried by the Clk pin between the
transmitter and receiver to form synchronous data transfer.

8.1.4 Signal Representation and Line Formations

We introduced how a bit is represented in voltage levels in Chap. 4. We also repre-
sent signals to be transmitted or received as voltage levels in digital communication.
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Fig. 8.3 Synchronous and
asynchronous data transfer

Besides, there are two different line formations called single-ended and differential
to transfer signals. Each formation has its advantages and disadvantages. Let’s
summarize them next.

The transferred signal is represented as a changing voltage value wrt ground
in the single-ended line. The advantage of this formation is that it requires less
number of wires and less complex circuitry. The disadvantage of the single-
ended line is that the transferred signal is affected by noise and line length in
long range. Therefore, it is used in short-range data transfer most of the times.
For the STM32F4 microcontroller, voltage levels used in single-ended line signal
transfer are compatible with the standards introduced in Chap. 4. Hence, they can
be generated by GPIO pins of the microcontroller.

Two different lines are used in the differential line formation. The transferred
signal is represented by the difference of two opposite voltage values in these lines.
As an example, the first and second lines get 3 V and 0 V, to represent logic level
1. The receiver takes the difference of these two signals and gets 3 V. Based on this
voltage value, it decides that the signal represents logic level 1. The opposite voltage
values are transmitted for logic level 0 representation. Hence, the first and second
lines get 0 and 3 V, respectively. The receiver takes the difference of these two values
and gets −3 V. Based on this voltage value, the receiver decides that this signal
represents logic level 0. The advantage of the differential line usage is that it is not
affected much by noise or range as in single-ended line. Hence, the differential line
is used in long-range data transfer most of the times. The disadvantage of differential
line is the need for extra line. Besides, the voltage levels used in operation exceed
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the ones available in the GPIO pins of the STM32F4 microcontroller. Hence, extra
circuitry may be needed to use the differential line signal transfer.

There must be a common ground between the connected devices in the single-
ended line. Although we did not show this common ground explicitly in the
connection diagrams in this chapter, the reader should take this property into account
while forming the connection. Having a common ground is not mandatory for the
differential line formation. It depends on the communication type.

8.1.5 Data Encoding Types

There are different data encoding types for digital communication. These can be
summarized as non return to zero, return to zero, non return to zero inverted, return
to zero inverted, and Manchester coding. Each data encoding type has its usage
areas. We introduce them next. As a side note, we will base our definitions on the
single-ended line representation in this section.

8.1.5.1 Non Return to Zero
The first data encoding type is non return to zero (NRZ). In this method, logic level
1 to be transmitted is represented by a signal with high voltage value such as 3 V.
The logic level 0 is represented by a signal with low voltage value such as 0 V. The
name non return to zero is given for the following reason. Assume that the data bit
to be transmitted is logic level 1. Hence, the signal goes to high voltage. This value
is kept till the next data bit arrives. Hence, it does not return to the old value. If the
next coming data bit is logic level 0, then the signal goes to low voltage. If the next
data to be transmitted is again logic level 1, then the signal stays at high voltage.
Some sources call NRZ as NRZ-L such that the suffix L indicates the level-based
operation.

8.1.5.2 Return to Zero
The second data encoding type is return to zero (RZ). In this method, data
representation has a changing voltage level within one clock period. As an example,
if the data bit to be transmitted is logic level 1, then the voltage level is high at
the first half of the clock period and low at the second half of the clock period.
Therefore, the signal turns back to its initial low value after the high value. As a
result, a clock-like signal is generated. If the data bit to be transmitted is logic level
0, then the voltage level stays at low value. This type of encoding can be obtained
by logically ANDing the clock signal and data bits to be transmitted.

8.1.5.3 Non Return to Zero Inverted
The third data encoding type is non return to zero inverted (NRZI) which is in fact a
subset of NRZ. However, NRZI does not correspond to the actual inverse operation.
Instead, data is represented by an edge signal (low to high or high to low transition)
instead of a voltage level in NRZI. If the data bit to be transmitted is logic level 1,
then a low to high or high to low transition occurs. The transmission type is selected
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by the previous value of the signal. As an example, if successive data bits have value
logic level 1, then a low to high and high to low transition occur repeatedly. If the
data bit to be transmitted has value logic level 0, then the voltage level stays at its
previous level. In other words, if successive logic level zeros come, then the signal
always stays at the same level.

8.1.5.4 Return to Zero Inverted
The fourth data encoding type is return to zero inverted (RZI). This is also a subset
of RZ such that it is the actual inverted operation for the RZ type. In other words, if
the data bit to be transmitted is logic level 0, then the signal will have high voltage
value in the first half of the clock signal. It will have the low voltage value in the
second half of the clock signal. If the data bit to be transmitted is logic level 1, then
the signal stays at low voltage level.

8.1.5.5 Manchester Coding
The fifth data encoding type is Manchester coding. In this method, data bits are
represented by edges (low to high or high to low transition) as in NRZI. If the data
bit to be transmitted is logic level 1, then a high to low voltage transition occurs
in the signal. Therefore, it will be similar to the clock signal. If the data bit to be
transmitted is logic level 0, then a low to high voltage transition occurs in the signal.
Therefore, it will be similar to inverse of the clock signal. This type of encoding can
be obtained by logically XORing data bits with the clock signal.

8.1.5.6 Demonstrating Different Data Encoding Types
We next provide an example to demonstrate all data encoding types. To do so, we
picked an 8-bit data packet to be transmitted as 10100111. Based on this sequence,
we provide the signals generated by the mentioned data encoding types in Fig. 8.4.

As can be seen in Fig. 8.4, when successive bits come as 101, the signal has high,
low, and high voltage levels in NRZ data encoding. When the following bit values
are 00, the corresponding signal stays at low voltage level. When, the following bit
values are 111, the signal voltage level goes to high value and stays there. Next,
we can observe the NRZI data encoding type. As mentioned before, the generated
signal with this method is not the inverse of the one generated by NRZ. Instead,
it has its own signal pattern for the selected 8-bit data packet. We can summarize
this operation as follows. For the 101 part of data bits, the signal has a high to low
transition in the first logic level 1 bit. Then, it stays at low voltage level for the
logic level 0 bit. When the next logic level 1 comes, a low to high voltage transition
occurs in the signal. As two successive logic level 0 bits come, the signal stays in
high voltage level. When three successive logic level 1 bits come, then the signal
has three successive transitions as high to low, low to high, and high to low.

We can also analyze the signals generated by RZ data encoding type in Fig. 8.4.
As can be seen in this figure, when the data bit to be transmitted is logic level 1,
the signal acts as the clock signal. When a logic level 0 comes, the signal stays
at low voltage level. The RZI data encoding type acts just in the reverse manner
such that when logic level 0 comes, the signal acts as the clock signal. When logic
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Fig. 8.4 Signals generated by different data encoding types for the given 8-bit data packet

level 1 comes, the signal stays at the low voltage level. Finally, Manchester coding
generates a signal such that it always changes. To be more specific, when the first
logic level 1 comes, the signal acts as the clock signal. When there is a change in
successive data bits, then the signal switches from high to low or low to high value.
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8.1.6 Simplex, Half, and Full Duplex Communication

There are three communication modes as simplex, half, and full duplex to handle
communication direction preferences. The simplex mode has one-way (unidirec-
tional) communication. In half duplex mode, two-way (bidirectional) communica-
tion is possible. However, only one-way communication can be done at once. In
full duplex mode, two-way (bidirectional) communication is possible. Moreover,
the two-way communication can be done at the same time. As an example, serial
communication can be done in either half or full duplex mode. In the former option,
one pin is sufficient. In the second option, two pins are required.

8.1.7 Master and SlaveModes

The next definition in digital communication is the master and slave modes. During
data transfer between two or more devices, one can act as master and the other as
slave. The master device generally starts the communication, asks information from
slave devices, and controls them. Besides, the master device is the one generating the
clock signal in synchronous communication. The slave device is the one responding
to the master or acting in accordance with the master device commands.

8.1.8 Baud Rate

The baud rate indicates how many bits are transmitted in 1 second for digital systems
having logic levels 0 and 1. This also corresponds to the bit rate definition. Both defi-
nitions indicate the speed of data transfer. This will be extremely important in digital
communication such that the higher the baud rate, the faster the communication. We
will provide specific baud rate values for different digital communication types in
the following sections.

8.2 Universal Asynchronous Receiver/Transmitter

The first digital communication type we will be using is the universal syn-
chronous/asynchronous receiver/transmitter (USART). There is also universal asyn-
chronous receiver/transmitter (UART). We will be using the latter in asynchronous
mode. Therefore, it will act as UART. Hence, we will only focus on UART from this
point on. As a side note, USART works in synchronous mode with an extra clock
pin. In this setting, it acts as SPI in master setting. We will not deal with this option
in this book.
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8.2.1 UARTWorking Principles

UART is generally preferred when fast data transfer speed is not needed. Hence, it is
most of the times used for debugging and programming a microcontroller. Besides,
it is used to communicate two microcontrollers. If two microcontrollers on different
boards need to communicate with UART, a physical layer should be available such
as RS232 or RS485. These will eliminate noise and power loss due to long-range
signal transfer.

We can summarize UART based on the definitions in Sect. 8.1 as follows. Data
transfer in UART can be done in frames. Each frame is composed of the start bit,
data, parity bit, and stop bit(s). Data can be composed of 7, 8, or 9 bits. Start and stop
bits are available in each frame. However, the parity bit can be used if needed. UART
uses NRZ data encoding. In general, UART uses the TTL voltage levels to represent
signals. UART can work in either full duplex, half duplex, or simplex modes. In the
full duplex mode, there are two pins called Rx (receive) and Tx (transmit). In the
half duplex mode, the Tx pin is used for both as Tx and Rx. In the simplex mode,
Tx pin of one device is connected to Rx pin of the other device. The remaining pins
are not connected. The master and slave definitions do not apply to UART. There
is no theoretical limit for the baud rate in UART. However, a limit applies based on
the used microcontroller and its associated clock.

We next provide general setup for UART communication between two devices
in Fig. 8.5. As can be seen in this figure, each device has two pins as Rx (receive)
and Tx (transmit). They are connected such that one Rx pin is connected to Tx and
vice versa.

8.2.2 UARTModules in the STM32F4Microcontroller

The STM32F4 microcontroller has four UART modules called UART4, UART5,
UART7, and UART8. The STM32F4 microcontroller also has four USART modules
called USART1, USART2, USART3, and USART6. These modules can be used in
UART mode.

We provide block diagram of a generic USART/UART module for the STM32F4
microcontroller in Fig. 8.6. In this figure, the clock pin will not be used when UART
is active. Here, the clock is provided by APB1 peripheral clock (PCLK1). There

Fig. 8.5 General setup for
UART communication
between two devices
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Fig. 8.6 USART/UART
block diagram in the
STM32F4 microcontroller

are two pins for data transfer as Tx and Rx. The module has hardware flow control
support which requires two extra pins as request to send (RTS) and clear to send
(CTS). UART does not need these pins. Finally, there is a clock output pin for
USART.

The USART1 module is connected to ST-LINK. Hence, it can communicate
with PC through virtual COM port. As a side note, this port is generated by USB
which is not an actual RS232 port. Through it, we can transfer data between the
microcontroller and PC as if we are communicating with a real communication port.

The USART1 and USART6 can reach baud rates up to 11.25 Mbits/s. The other
modules can reach a maximum baud rate of 5.625 Mbits/s. All supported baud rate
values for UART and USART modules are given in the datasheet [7]. The reader
can reach the necessary detailed information from there.

The USART and UART modules in the STM32F4 microcontroller support IrDA
and LIN protocols. IrDA is the infrared light-based communication method. The
STM32F4 microcontroller only supports the IrDA SIR ENDEC method which uses
the RZI data encoding. As a reminder, when data to be transmitted is logic level 0,
an infrared light pulse is submitted. If data to be transmitted is logic level 1, nothing
is sent.

LIN is the low-cost protocol developed specifically for automotive industry.
It is introduced since CAN bus is expensive. Therefore, it is used in noncritical
applications such as car wiper, window, and ventilating control. LIN protocol works
in half duplex mode. It supports connecting multiple slave devices to a single master
device. The master device can issue a 6 bit message. All connected slave devices
listen to this message. Only one slave responds to it and sends back a message to
the master device in the form of 2 to 6 data bytes.
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All USART modules in the STM32F4 microcontroller support smartcard pro-
tocol used in communicating with chip cards. This protocol is similar to UART.
The STM32F4 microcontroller supports the ISO 7816-3 standard for this purpose.
According to this standard, each data packet is composed of 1 start bit, 8 data bits,
1 parity bit, and 1.5 stop bits. The 1.5 stop bits stand for sending the stop bit for 1.5
clock periods. The smartcard operation is half duplex such that only the Tx pin is
used in communication.

8.2.3 UART Setup in the STM32F4Microcontroller

We will consider UART setup in this section. Therefore, we will start with the C
language based setup. This will be followed by C++ and MicroPython based setup
operations.

8.2.3.1 Setup via C Language
We will benefit from STM32CubeMX to setup the UART/USART module proper-
ties in C language. At this stage, we assume that a project has already been created
under STM32CubeIDE as given in Sect. 3.1.3. In order to set up UART/USART via
STM32CubeMX, first open the “Device Configuration Tool window by clicking the
“.ioc” file in the project explorer window. Then, configuration can be done in this
section as shown in Fig. 8.7. We will provide details of this operation next.

In order to use the UART/USART module, Rx and Tx pins should be configured
first. To do so, click on the GPIO pin with UART/USART capability on the
STM32F4 microcontroller in the STM32CubeMX interface. Afterward, select the
GPIO type as “USARTx_RX,” “USARTx_TX,” “UARTy_RX,” or “UARTy_TX”
in the “Device Configuration Tool” window as in Fig. 8.7. To note here, x can be
one of 1, 2, 3, or 6 and y can be one of 4, 5, 7, or 8. Once the Rx and Tx pins are
selected, click the set USART or UART module under the “Connectivity” section

Fig. 8.7 UART/USART
configuration in
STM32CubeMX
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Fig. 8.8 UART/USART mode menu in STM32CubeMX

Fig. 8.9 UART/USART
configuration menu in
STM32CubeMX

from the left menu of STM32CubeMX. Then, mode configuration can be done
in this section as in Fig. 8.8. Here, select the “Asynchronous” option for UART
mode. The other options “IrDa,” “LIN,” “Smartcard,” “Synchronous,” and “Single
Wire (Half Duplex)” can be selected for other UART/USART modes. We will not
consider these modes in this chapter.

After configuring the UART mode, its parameters can be set from the opened
“Parameter Settings” tab in the “Configuration” menu as in Fig. 8.9. Here, data
width can be selected as “8-bit” or “9-bit” including the parity bit. The parity bit
can be selected as “None,” “Even,” or “Odd.” The stop bit can be selected as “1” or
“2.” Finally, “Baud Rate” can be edited in terms of bits/s under “Basic Parameters.”
Moreover, data direction can be selected as “Receive Only,” “Transmit Only,” or
“Receive and Transmit.” Oversampling ratio can be selected as “8” or “16” under
“Advanced Parameters.” To note here, baud rate can take the maximum value as
PCLK1/oversampling ratio.
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The UART module can operate in two modes as blocking (polling) or non-
blocking (interrupt). In the blocking operation mode, the module waits (polling)
until the transmit or receive operation has finished once it starts sending or receiving
data in a loop. However, this mode blocks other routines while it waits. A timeout
duration can be configured to terminate the operation if transmission or reception
is not finished in due time. In the non-blocking operation mode, the module sends
or receives data using first in, first out (FIFO) buffers. As the transmit or receive
operation ends, an interrupt is generated. This operation does not block the code
routine. That is why this mode is called non-blocking.

If an interrupt is not required, then this step can be skipped. Otherwise, the UART
interrupt should be enabled from the NVIC tab in the configuration menu as in
Fig. 8.9. The interrupt priority can be changed under the “System Core - NVIC”
section. To note here, it is suggested to lower the UART interrupt priority since the
HAL system uses the SysTick interrupt to create precise 1 ms ticks for internal
operations and the HAL_Delay function. The SysTick interrupt has the highest
priority among peripheral units. Hence, assigning a lower priority to the UART
interrupt will not affect it. Otherwise, precision of the HAL_Delay function may
degrade.

8.2.3.2 Setup via C++ Language
We can benefit from Mbed and available functions there to adjust the UART/USART
module properties in C++ language. To do so, we should first adjust the Rx and
Tx pins. This can be done by the class BufferedSerial or UnbufferedSerial.
Usage of these classes is similar to the class DigitalIn introduced in Sect. 4.4.2.
Therefore, we should supply Tx and Rx pin names to the class BufferedSerial
or UnbufferedSerial. Optionally, we can provide the Baud Rate value
to the classes. If this value is not provided, then the BufferedSerial or
UnbufferedSerial class uses the default Baud Rate value which is 9600 bits/s.

The difference between BufferedSerial and UnbufferedSerial classes
is as follows. The BufferedSerial class uses an intermediary buffer to
send and receive data to transmit multiple bytes. The UnbufferedSerial
class does not use such a buffer to transmit or receive data. Therefore, it is
recommended to use the BufferedSerial class in terms of CPU load as all
buffering operations are handled by HAL library functions. The BufferedSerial
class uses circular buffers with different size. This size can be changed in the
“mbed.json” file using the parameters drivers.uart-serial-txbuf-size and
drivers.uart-serial-rxbuf-size. The default buffer size here is 256 bytes.

The BufferedSerial and UnbufferedSerial class parameters can be con-
figured after initialization. The configurable parameters are baud rate, data length
(7 or 8 bits), parity bit (odd, even, none), and stop bit (1 or 2 bits). Moreover, the
operation mode can be selected as blocking or non-blocking. A callback function
can be called whenever an interrupt occurs in non-blocking mode.
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8.2.3.3 Setup via MicroPython
MicroPython has the UART class to perform UART operations. The UART module is
created using the function pyb.UART(bus). Here, bus represents the UART module
number. After the UART module is created, it can be initialized using the function
init(baudrate, bits, parity, stop, timeout, flow). Here, baudrate
is used to set the baud rate. The bits is used to set the number of data bits. It
can be selected as 7, 8 (default), or 9. The parity is used to set the parity which
can be selected as None, 0 (Even), or 1 (Odd). It is set to None by default. The
stop is used to select the number of stop bits which can be selected as 1 (default)
or 2. The timeout is used to define the timeout value in milliseconds. This is the
waiting time for receiving or transmitting the first data. The flow is used to select
the type of flow control. We will not explain flow control in this book. Hence, it can
be left undefined which selects no flow control automatically. Unfortunately, only
USART1 is enabled in the MicroPython firmware given in the official web site.
Moreover, USART1 is used by REPL. Hence, it cannot be used to communicate
with PC. The reader can use the MicroPython firmware provided in the book web
site. In this firmware, UART5 is enabled with pins PD2 and PC12 set as Tx and Rx,
respectively.

8.2.4 UART Usage in the STM32F4Microcontroller

As the UART module is set up in the previous section, we will focus on its usage in
this section. Therefore, we will benefit from C, C++, and MicroPython languages.

8.2.4.1 Usage via C Language
We can benefit from the HAL library functions to use the UART/USART module
in C language after setting its properties as explained in Sect. 8.2.3. In this section,
we only provide the functions related to UART mode. We explain these functions
in detail next. Then, we provide usage examples of these functions in different
applications.

There are two functions for blocking (polling) mode operation of the UART
module. The function HAL_UART_Transmit can be used to send data. Likewise,
the function HAL_UART_Receive can be used to receive data in blocking mode. We
next provide the detail of these functions.

HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
huart: pointer to the UART_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data elements to be sent
Timeout: timeout duration
*/

HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
Size: size of data elements to be received
*/
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There are two functions for non-blocking (interrupt) mode operation of UART
module. The function HAL_UART_Transmit_IT can be used to send data in non-
blocking mode. Likewise, the function HAL_UART_Receive_IT can be used to
receive data in non-blocking mode.

If the UART interrupt has been enabled and data is sent or received, then the
callback function HAL_UART_TxCpltCallback or HAL_UART_RxCpltCallback is
called. We should define these functions within the “main.c” file in our project. To
note here, these functions are generated in weak form (without any content) auto-
matically under the file “STM32F4xx_hal_uart.c” when a project is created. This
means when the reader forgets defining the actual HAL_UART_TxCpltCallback or
HAL_UART_RxCpltCallback function, the code still runs. When the user defines
his or her function, then these weak functions are ignored. We next provide detail of
these functions.

HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size)

/*
huart: pointer to the UART_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data elements to be sent
*/

HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size)

/*
Size: size of data elements to be received
*/

void HAL_UART_TxCpltCallback (UART_HandleTypeDef *huart)

void HAL_UART_RxCpltCallback (UART_HandleTypeDef *huart)

Let’s provide examples on the usage of UART/USART modules via C language.
The first example, with the C code given in Listing 8.1, aims to familiarize the reader
with the setup and usage of the UART/USART module. Here, a string and counter
value is sent to PC from the STM32F4 microcontroller via ST-LINK virtual COM
port every 2 s. The green LED connected to pin PG13 of the STM32F4 board is
toggled once data is transmitted. In this example, the UART module is configured
in blocking mode. On the PC side, we should use an application, such as Tera Term,
to receive data sent from the STM32F4 microcontroller.

Listing 8.1 Usage of the UART/USART module in blocking operation mode, the C code

/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
uint8_t serData[] = " STM32F4 UART PC Example\r\n";
uint8_t decNum[6];
uint16_t counter = 0;
/* USER CODE END PV */

/* Infinite loop */
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/* USER CODE BEGIN WHILE */
while (1)
{
sprintf(decNum, "%d", counter++);
HAL_UART_Transmit(&huart1, decNum, (uint16_t)sizeof(decNum),

1000);
HAL_UART_Transmit(&huart1, serData, (uint16_t)sizeof(serData),

1000);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
HAL_Delay(2000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In order to execute the code in Listing 8.1, create an empty project. Then,
configure the pins PA9 and PA10 as USART1_TX and USART1_RX, respectively.
Afterward, enable the asynchronous mode of the USART1 module; set the baud rate
to 115200 bits/s, data word length to 8, parity to none, stop bits to 1, data direction to
transmit only, and oversampling to 16. As the project is compiled and run, the string
will be transmitted to the host PC via UART and the green LED will be toggled. Do
not forget to use the terminal program to observe the sent string in the host PC.

The second example given in Listing 8.2 repeats the first example given in
Listing 8.1 in non-blocking mode. This time when the character ’g’ is received,
the green LED connected to pin PG13 of the STM32F4 board is toggled. When
the character ’r’ is received, the red LED connected to pin PG14 of the STM32F4
board is toggled. For execution, replace the code given in Listing 8.1 with the one in
Listing 8.2. Then, enable the USART1 interrupt. As the project is compiled and run,
the code will wait to receive data from the UART module. To test the code, send the
characters ’r’ and ’g’ from the host PC to the STM32F4 microcontroller. Hence, we
can observe that the red and green LEDs toggle.

Listing 8.2 Usage of the UART/USART module in non-blocking operation mode, the C code

/* USER CODE BEGIN PV */
uint8_t serRxData;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (serRxData == ’g’)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
else if (serRxData == ’r’)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);

__NOP();
HAL_UART_Receive_IT(&huart1, &serRxData, 1);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart1, &serRxData, 1);
/* USER CODE END 2 */
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The third example sends and receives 1 byte of data using loopback property
of the UART module. We will perform this operation at every button press of the
STM32F4 board. Here, the Rx pin of the UART5 module should be connected
to the Tx pin of the same module using an external jumper wire. Hence, it can
receive the sent data. The code blocks for sending and receiving data are executed
in the same microcontroller in the loopback operation. Hence, the code can be easily
debugged without using an additional board. The C code for this example is given
in Listing 8.2. Here, the UART5 module will be configured in non-blocking mode.
Then, the related interrupts are enabled. The green LED on the STM32F4 board will
toggle once data is transmitted. The red LED on the STM32F4 board will toggle
once data is received.

Listing 8.3 Usage of the UART/USART module in non-blocking loopback operation mode, the
C code

/* USER CODE BEGIN PV */
uint8_t serTxData = 0;
uint8_t serRxData;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
HAL_UART_Transmit_IT(&huart5, &serTxData , 1);
serTxData++;
}
}

void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
}

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
__NOP();
HAL_UART_Receive_IT(&huart5, &serRxData, 1);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_UART_Receive_IT(&huart5, &serRxData, 1);
/* USER CODE END 2 */

In order to execute the code in Listing 8.3, create an empty project; configure the
pins PC12 and PD2 as UART5_TX and UART5_RX, respectively. Then, connect
the pin PC12 to PD2 using a jumper cable. Afterward, enable asynchronous mode
of the UART5 module; set the baud rate to 9600 bits/s, data word length to 8, parity
to none, stop bits to 1, data direction to receive and transmit, and oversampling to 16.
Do not forget to enable the UART5 module interrupt. As the project is compiled and
run, the string will be transmitted and received once the onboard button (connected
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to pin PA0) is pressed. The reader can observe the received byte by placing a
breakpoint to the __NOP line in the function HAL_UART_RxCpltCallback.

8.2.4.2 Usage via C++ Language
We can benefit from the available functions in Mbed to use the UART/USART
module via C++ language. Here, the functions of BufferedSerial or
UnbufferedSerial class will be of help. The function baud sets the baud rate
of the UART/USART module. The function format sets the transmission format
used by the serial port. The functions read and write can be used to receive
and transmit data, respectively. Moreover, the function readable can be used
to determine whether there is a character available to be read in blocking mode.
The function set_blocking can be used to select the blocking or non-blocking
mode. The function attach can be used to attach a callback function whenever a
UART/USART receive interrupt is generated in non-blocking mode. To note here,
the interrupt functions can only be attached with the class UnbufferedSerial. As
the event in the non-blocking mode is enabled, BufferedSerial class handles the
receive and transmit operation internally. We provide the detailed explanation of the
mentioned functions next.

BufferedSerial (PinName tx, PinName rx, int baud=
MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE)

/*
tx: transmit pin
rx: receive pin
baud: baud rate
*/

UnbufferedSerial (PinName tx, PinName rx, int baud=
MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE)

void baud (int baudrate)

void format (int bits=8, Parity parity=SerialBase::None, int
stop_bits=1)

/*
bits: number of bits in a word, it can be one of 5, 6, 7, or 8
parity: parity bit used, it can be one of SerialBase::None,

SerialBase::Odd, SerialBase::Even, SerialBase::Forced1 or
SerialBase::Forced0

stop_bits: number of stop bits, it can be one of 1 or 2
*/

ssize_t write (const void *buffer, size_t length)
/*
buffer: buffer to write from
length: number of bytes to write
*/

ssize_t read (void *buffer, size_t length)
/*
buffer: buffer to read into
length: number of bytes to read
*/

bool readable ()
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bool writable ()

virtual int set_blocking (bool blocking)
/*
blocking true for blocking mode, false for nonblocking mode
*/

void attach (Callback < void()> func, IrqType type=RxIrq)
/*
func: pointer to a void function
type: which serial interrupt to attach the member function to, it

can be one of RxIrq or TxIrq
*/

We next provide examples on the usage of the UART/USART module in Mbed.
Our first example, with the C++ code given in Listing 8.4, sends data from the
STM32F4 microcontroller to the host PC. To execute this code in Mbed Studio, we
should copy and paste it to the “main.cpp” file in our active project. As can be seen
in Listing 8.4, the baud rate is set to 115200 bits/s first. Then, the code sends a fixed
string and counter value to the host PC and sleeps for 2 s in an infinite loop.

Listing 8.4 First example on the usage of the UART/USART module, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 2000

DigitalOut greenLED(LED1);
static BufferedSerial serialPort(USBTX, USBRX) ;

uint8_t serData[] = "STM32F4 UART PC Example\n\r";

int main(void)
{
serialPort.set_baud(115200);

while (1) {
greenLED = !greenLED;
serialPort.write(serData, sizeof(serData));
thread_sleep_for(WAIT_TIME_MS);
}
}

The second example, with the C++ code given in Listing 8.5, repeats the example
given in Listing 8.1. This time when the character ’g’ is received, the green LED
connected to pin PG13 of the STM32F4 board is toggled. When the character ’r’ is
received, the red LED connected to pin PG14 of the STM32F4 board is toggled. To
execute this code in Mbed Studio, we should copy and paste it to the “main.cpp”
file in our active project.

Listing 8.5 Second example on the usage of the UART/USART module, the C++ code

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
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static UnbufferedSerial serialPort(USBTX, USBRX);
uint8_t serRxData;

void UARTRxISR()
{
serialPort.read(&serRxData , 1);
if (serRxData == ’g’)
greenLED = !greenLED;
else if (serRxData == ’r’)
redLED = !redLED;
}

int main()
{
serialPort.set_blocking(false);
serialPort.attach(&UARTRxISR);
__enable_irq();

while (true);
}

The third example, with the C++ code given in Listing 8.6, implements the
loopback property of the UART module such that the transmitted data is received
by the same microcontroller. Hence, the program flow can be debugged without
additional hardware. To do so, connect the pin PC12 to PD2 of the STM32F4 board
using a jumper cable. Then, copy and paste the code given in Listing 8.6 to the
“main.cpp” file in the active project and run it. Here, UnbufferedSerial class is
used to generate a UART receive interrupt. When the onboard button (connected to
pin PA0) is pressed, a counter value is sent. Once this value is received, the callback
function is executed.

Listing 8.6 Third example on the usage of the UART/USART module, the C++ code

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
InterruptIn userButton(BUTTON1);

static UnbufferedSerial serialPort(PC_12, PD_2, 9600);

uint8_t serTxData = 0;
uint8_t serRxData;

void getButtons()
{
serialPort.write(&serTxData , 1);
serTxData++;
greenLED = !greenLED;
}

void UARTRxISR()
{
redLED = !redLED;
serialPort.read(&serRxData , 1);
}

int main()
{
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serialPort.set_blocking(false);
serialPort.attach(&UARTRxISR);
userButton.fall(&getButtons);
__enable_irq();

while (true);
}

8.2.4.3 Usage via MicroPython
In MicroPython, there are two functions write(buf) and writechar(char)
for UART write operations. The function write(buf) is used to send buf byte
array. The function writechar(char) is used to send 1 byte data. For the
UART read operation, there are four functions as read([nbytes]), readchar(),
readinto(buf[nbytes]), and readline(). The function read([nbytes]) is
used to read number of bytes specified by nbytes. If timeout occurs beforehand,
the function returns the read bytes. If nbytes is not defined, it is used to read as
many bytes as possible until timeout occurs. This function returns read bytes or
None if there is no data after timeout. The function readchar() is used to read
1 byte data. It returns read byte or -1 on timeout. The function read([nbytes])
works the same as the function readinto(buf[nbytes]). Only the read data is
stored directly to the buf byte array. This function returns number of bytes stored in
buf or None if there is no data after timeout. The function readline() is used to
read bytes until receiving a newline character. If timeout occurs before the newline
character is read, all available data is returned. If there is no data after timeout, it
returns None. Finally, the function any() is used to return number of bytes waiting.
It returns 0 if there is no received data.

We next provide examples on the usage of the UART/USART module in
MicroPython. In the first example, we send a fixed string to the PC every 2 s in
an infinite loop. The green LED connected to pin PG13 is toggled to indicate data
transfer is done. The MicroPython code for this example is given in Listing 8.7.

Listing 8.7 First example on the usage of the UART/USART module, the MicroPython code

import pyb
serData = "STM32F4 UART PC Example\r\n"

def main():
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
uart5 = pyb.UART(5)
uart5.init(115200, timeout=100)
while True:

uart5.write(serData)
greenLED.value(not greenLED.value())
pyb.delay(2000)

main()

In the second example, the UART5 module is used in blocking mode to check the
receiving character. The green LED connected to pin PG13 is toggled if the received
character is ’g’. The red LED connected to pin PG14 is toggled if the received
character is ’r’. The MicroPython code for this example is given in Listing 8.8.
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Listing 8.8 Second example on the usage of the UART/USART module, the MicroPython code

import pyb

def main():
uart5 = pyb.UART(5)
uart5.init(115200, timeout=100)
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
while True:

input = uart5.readchar()
if input == 0x67:

greenLED.value(not greenLED.value())
elif input == 0x72:

redLED.value(not redLED.value())

main()

In the third example, we use the loopback property of the UART module. Here,
Tx and Rx pins of UART module are connected to each other. Hence, the transmitted
data is received by the same microcontroller. Therefore, connect the pins PC12
and PD2 using a jumper cable. Each time onboard push button is pressed, data is
transmitted and received via the UART5 module. Green and red LEDs toggle to
track the transmit and receive operations, respectively. The MicroPython code for
this example is given in Listing 8.9.

Listing 8.9 Third example on the usage of the UART/USART module, the MicroPython code

import pyb

serTxData = 0
uart5 = pyb.UART(5)
uart5.init(115200, timeout=100)
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)

def getButtons(id):
global serTxData
uart5.writechar(serTxData)
serTxData = serTxData + 1
greenLED.value(not greenLED.value())

def main():
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.IRQ_RISING , pyb.

Pin.PULL_DOWN , getButtons)
while True:

if uart5.any():
redLED.value(not redLED.value())
serRxData = uart5.readchar()
print(serRxData)

main()
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8.3 Serial Peripheral Interface

The second digital communication type we will be introducing is the serial
peripheral interface (SPI). We will next focus on its working principles. Then,
we will consider the setup and usage of the SPI module specific to the STM32F4
microcontroller.

8.3.1 SPI Working Principles

SPI is generally used for high-speed serial data transfer. Hence, it is suitable for
transferring data with large size. We can summarize SPI properties based on the
definitions in Sect. 8.1 as follows. SPI has an 8 or 16 bit frame consisting only
data. Hence, no start, stop, or parity bits are used in the frame. SPI uses NRZ data
encoding. SPI can work in half or full duplex mode. Moreover, if we do not receive
data from the slave in the full duplex mode (we do not use one of the MISO or
MOSI pins, to be explained next), actually it works in simplex mode. SPI can work
in either master or slave mode based on the application. The master device generates
the clock signal. More than one slave device can be connected to the communication
line. In this setting, the SPI master chip select (CS) pins should be used to select
which slave to be communicated to. In this setup, one dedicated CS pin should be
used for each slave device. If one slave device is used in data transfer, its CS pin can
be set to ground or VDD based on its being active low or high, respectively. There is
no limit for data transmission speed in SPI. As in UART, baud rate directly depends
on the microcontroller and its clock used in operation.

In order to explain working principles of SPI, we should take a look at the
connection diagram between the transmitter and receiver given in Fig. 8.10. As
can be seen in this figure, there is one master and one slave device in operation.
There are four pins in operation as master in/slave out (MISO), master out/slave in
(MOSI), serial clock (SCLK), and not slave select (NSS). The same named pins are
connected. However, they work in reverse order as follows. When the device is in
master mode, MISO works for data input, MOSI for data output, SCLK as clock
output, and NSS as slave select output (in active low mode). When the device is
in slave mode, MISO works for data output, MOSI for data input, SCLK as clock
input, and NSS as slave select input (in active low mode).

Data transfer between the master and slave devices occurs in serial mode between
MOSI and MISO pins in Fig. 8.10. The most significant bit is sent first in data
transfer. Moreover, communication is initiated by the master device. When the
master device transmits data to a slave device via the MOSI pin, the slave device
responds via the MISO pin. This implies full duplex communication with both data
out and data in, synchronized with the same clock signal (which is provided by the
master device via the SCK pin).
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Fig. 8.10 SPI connection
diagram between the
transmitter and receiver

8.3.2 SPI Modules in the STM32F4Microcontroller

The STM32F4 microcontroller has six SPI modules as SPI1, SPI2, SPI3, SPI4,
SPI5, and SPI6. Each module can work either in master or slave mode. They can
also work in half or full duplex modes.

SPI modules use the peripheral clock as the clock signal. The master device
has its own clock prescaler so that the clock signal can be divided by 2, 4, 8, 16,
32, 64, 128, or 256. The resulting clock signal will decide on the baud rate. To be
more specific, SPI1, SPI4, SPI5, and SPI6 modules use the APB2 peripheral clock
(PCLK2). Hence, the maximum baud rate can be 45 Mbits/s. The SPI2 and SPI3
modules use the APB1 peripheral clock (PCLK1). This may result in the maximum
baud rate to 22.5 Mbits/s.

We provide block diagram of a generic SPI module available in the STM32F4
microcontroller in Fig. 8.11. As can be seen in this figure, there is a shift register in
the module. It has an essential role in data transfer. The communication and CRC
controller blocks are responsible for reading and writing data coming from software
to FIFO buffer modules. Moreover, they are responsible for interrupt generation. If
the SPI module is selected as master, the NSS logic module becomes responsible
for setting the output and selecting the slave device. If the SPI module is selected as
slave, then the NSS logic module activates the read/write operation. The NSS logic
module also disables the shift register if it is not selected. This is done to eliminate
data confusion if more than one slave device is present in operation. The baud
rate generator module is responsible for generating the SPI clock signal when the
module works as master. The register block keeps the modification bits responsible
for setting up all properties of the SPI module.

We can explain working principles of the SPI module as follows. Shift registers in
the master and slave devices feed 1 bit to their output at each clock pulse generated
by the master device. Since the master output pin is connected to the slave input pin,
the bit fed from the master device shift register is received by the shift register in
the slave device. Likewise, the master input is connected to the slave output. Hence,
the bit fed from the shift register of the slave device is fed to the shift register in
the master device. As the master device generates eight clock pulses, 1 data byte is
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Fig. 8.11 Block diagram of the SPI module in the STM32F4 microcontroller

transferred between the master and slave devices. As the transfer operation ends, the
master or slave device moves data in the shift register to the Rx FIFO buffer. Hence,
data read cycle is complete. If the master or slave device will transfer new data, it is
first written to the Tx FIFO buffer. As the data in the shift register is moved to the
Rx FIFO buffer, this data is stored in the shift register.

SPI modules in the STM32F4 microcontroller support hardware cyclic redun-
dancy check (CRC). This allows using an SD card via SPI. As a side note, the SD
card sends 2 bytes of CRC information in its data packets. This should be decoded
first. Since the SPI module in the STM32F4 microcontroller handles this operation,
the SD card can be used by it.

The SPI module in the STM32F4 microcontroller also supports I2S audio
interface. To be more specific, there are I2S modules available in the microcontroller
multiplexed by SPI2 and SPI3 modules. SPI is the default mode in these modules.
I2S can be selected by software. We will introduce I2S in Sect. 8.7.
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Fig. 8.12 SPI configuration
in STM32CubeIDE

8.3.3 SPI Setup in the STM32F4Microcontroller

We will consider SPI setup in this section. Therefore, we will start with the C
language based setup. This will be followed by C++ and MicroPython based setup
operations.

8.3.3.1 Setup via C Language
We will benefit from STM32CubeMX to setup the SPI module properties in C
language. At this stage, we assume that a project has already been created under
STM32CubeIDE as given in Sect. 3.1.3. In order to setup SPI via STM32CubeIDE,
first open the “Device Configuration Tool” window by clicking the “.ioc” file in the
project explorer window. Then, configuration can be done as shown in Fig. 8.12. We
will provide details of this operation next.

In order to use the SPI module, MISO, MOSI, and SCK (and NSS if it will
be used) pins should be configured first. To do so, click on the GPIO pin with
SPI capability in the STM32F4 microcontroller in the STM32CubeMX interface.
Afterward, select the GPIO type as “SPIx_MISO,” “SPIx_MOSI,” “SPIx_SCK,” or
“SPIx_NSS” in the “Device Configuration Tool” window as in Fig. 8.12. To note
here, x can be 1, 2, 3, 4, 5, or 6 to denote SPI1, SPI2, SPI3, SPI4, SPI5, or SPI6,
respectively. Once the SPI pins are selected and configured, click the set SPI module
under the “Connectivity” section from the left menu of STM32CubeMX. Then,
mode configuration can be done as shown in Fig. 8.13. Here, the mode can be one of
“Full-Duplex Master,” “Full-Duplex Slave,” “Half-Duplex Master,” “Half-Duplex
Slave,” “Receive-Only Master,” “Receive-Only Slave,” “Transmit-Only Master,” or
“Transmit-Only Slave.” Also, the hardware NSS signal can be enabled by clicking
its checkbox.
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Fig. 8.13 SPI mode menu in
STM32CubeIDE

Fig. 8.14 SPI configuration
menu in STM32CubeIDE

After configuring the SPI mode, its parameters can be set from the opened
“Parameter Settings” tab in the “Configuration” menu as in Fig. 8.14. Here, frame
format can be selected as one of “Motorola” or “TI,” data size can be selected as one
of “8-bit” or “16-bit,” and the first bit can be selected as “MSB First” or “LSB First”
under “Basic Parameters.” The “TI” format can be only selected if hardware NSS
signal is enabled. The clock prescaler for baud rate, clock polarity, and phase can be
configured under “Clock Parameters.” The clock prescaler is available only for the
master device. CRC calculation can be enabled under “Advanced Parameters.”

Similar to UART, SPI can operate in two operation modes as blocking (polling)
or non-blocking (interrupt). If interrupt generation is not required, then this step
can be skipped. Otherwise, the SPI interrupt should be enabled from the NVIC tab
in the configuration menu as in Fig. 8.14. The interrupt priority can be changed
under the “System Core - NVIC” section. To note here, it is suggested to lower
the SPI interrupt priority since HAL functions use the SysTick interrupt to create
precise 1 ms ticks for internal operations and the HAL_Delay function. The SysTick
interrupt has the highest priority among peripheral units. Hence, assigning a lower
priority to the SPI interrupt will not affect it. Otherwise, precision of the HAL_Delay
function may degrade.
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8.3.3.2 Setup via C++ Language
We can benefit from Mbed and available functions there to adjust the SPI module
properties in C++ language. To do so, we should first adjust MOSI, MISO, SCK, and
NSS pins. This can be done by the classes SPI and SPISlave for master and slave
modes, respectively. We should supply MOSI, MISO, SCK, and NSS pin names to
the class SPI or SPISlave. Parameters for both classes, such as frequency, data size,
clock polarity, and clock phase, can be configured after initialization. Moreover, the
operation mode can be selected as blocking or non-blocking. A callback function
can be called whenever an interrupt occurs in non-blocking mode.

8.3.3.3 Setup via MicroPython
MicroPython has the SPI class to perform SPI operations. The SPI module is
created using the function pyb.SPI(bus). Here, bus represents the SPI module
number. SPI5 module is defined in the MicroPython firmware with the pins PF9 as
MOSI, PF8 as MISO, and PF7 as SCK. After the SPI module is created, it can
be initialized using the function init(mode, baudrate, polarity, phase,
bits, firstbit). Here, mode is used to set the SPI module as master or slave
using SPI.MASTER or SPI.SLAVE, respectively. The baudrate is the SCK clock
rate. polarity is used to set the polarity of clock line during idle state. It can be
selected as 0 or 1 to set idle state as low or high, respectively. The phase is used to
set clock edges to sample and shift data. If it is set to 0, data is sampled at the rising
clock edge and shifted at the falling clock edge. If it is set to 1, data is sampled at the
falling clock edge and shifted at the rising clock edge. The bits is used to set the
number of bits transferred and can be selected as 8 or 16. The firstbit is used to
set the transfer direction of the bits. If it is set as SPI.MSB, data bits are transferred
starting from the most to least significant bit. If it is set as SPI.LSB, data bits are
transferred starting from the least to most significant bit.

8.3.4 SPI Usage in the STM32F4Microcontroller

As the SPI module is setup in the previous section, we will focus on its usage here.
Therefore, we will benefit from C, C++, and MicroPython languages.

8.3.4.1 Usage via C Language
We can benefit from the HAL library functions to use the SPI module in C
language after setting its properties in STM32CubeMX as explained in Sect. 8.3.3.
There are three functions for blocking (polling) mode operation of SPI mod-
ule. The function HAL_SPI_Transmit can be used to send data. The function
HAL_SPI_Receive can be used to receive data in blocking mode. The function
HAL_SPI_TransmitReceive combines the former two functions and transmits and
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receives data at the same time in blocking mode. We next provide detail of these
functions.

HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
hspi: pointer to the SPI_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data to be sent
Timeout: timeout duration
*/

HAL_SPI_Receive(SPI_HandleTypeDef * hspi, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
Size: size of data to be received
*/

HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData
, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)

/*
pTxData: pointer to the transmission data buffer
pRxData: pointer to the reception data buffer
Size: size of data elements to be sent and received
*/

There are three functions for non-blocking (interrupt) mode operation of SPI
module. The function HAL_SPI_Transmit_IT can be used to send data. The
function HAL_SPI_Receive_IT can be used to receive data in non-blocking mode.
The function HAL_SPI_TransmitReceive_IT combines the former two functions
and transmit and receive data at the same time in non-blocking mode.

If the SPI interrupt is enabled, and data is sent or received, then the callback
function HAL_SPI_TxCpltCallback or HAL_SPI_RxCpltCallback is called.
Also, the callback function HAL_SPI_TransmitReceive_IT is called when data
is sent and received at the same time. We should define these functions within the
“main.c” file in our project. To note here, these functions are generated in weak
form (without any content) automatically under the file “STM32F4xx_hal_spi.c”
when a project is created. This means when the reader forgets defining the
actual function HAL_SPI_TxCpltCallback, HAL_SPI_RxCpltCallback, or
HAL_SPI_TransmitReceive_IT, the code still runs. When the user defines his
or her function, then these weak functions are ignored. We next provide detail of
these functions.

HAL_SPI_Transmit_IT(SPI_HandleTypeDef * hspi, uint8_t * pData,
uint16_t Size)

/*
hspi: pointer to the SPI_HandleTypeDef struct
pData: pointer to data buffer
Size: size of data to be sent
*/

HAL_SPI_Receive_IT(SPI_HandleTypeDef * hspi, uint8_t * pData,
uint16_t Size)

/*
Size: size of data to be received
*/
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HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *
pTxData, uint8_t *pRxData, uint16_t Size)

/*
pTxData: pointer to the transmission data buffer
pRxData: pointer to the reception data buffer
Size: size of data to be sent and received
*/

HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)

HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)

HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)

Let’s provide examples on the usage of SPI module via C language. The first
example, with the C code given in Listing 8.10, aims to familiarize the reader
with the setup and usage of the SPI module. Here, SPI4 and SPI5 modules will
be configured as master and slave, respectively. There are two counter values in the
code. The first one will be sent to the slave from master. Upon receiving this data
by the slave, the green LED connected to pin PG13 of the STM32F4 board will
toggle if mod 3 of the received counter value is equal to zero. Afterward, the second
counter will be sent to master from slave. Upon receiving this data by the master,
the red LED connected to pin PG14 of the STM32F4 board will toggle if mod 5 of
the received counter value is equal to zero. This operation will repeat every 2 s.

Listing 8.10 Usage of the SPI module in blocking operation mode, the C code

/* USER CODE BEGIN PV */
uint8_t masterTxData = 0;
uint8_t slaveTxData = 0;
uint8_t masterRxData;
uint8_t slaveRxData;
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
masterTxData++;
slaveTxData++;

HAL_SPI_TransmitReceive(&hspi4, &masterTxData , &masterRxData , 1,
1000);

HAL_SPI_TransmitReceive(&hspi5, &slaveTxData , &slaveRxData , 1,
1000);

if ((slaveRxData % 3) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);

if ((masterRxData % 5) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);

HAL_Delay(2000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
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/* USER CODE END 3 */

In order to execute the code in Listing 8.10, create an empty project; configure
the pins PE2, PE4, PE5, and PE6 as SPI4_SCK, SPI4_NSS, SPI4_MISO, and
SPI4_MOSI, respectively. Likewise, the pins PF6, PF7, PF8, and PF9 should be
set as SPI5_NSS, SPI5_SCK, SPI5_MISO, and SPI5_MOSI, respectively. Then,
connect the pin PE2 to PF7, PE4 to PF6, PE5 to PF8, and PE6 to PF9 with jumper
cables. Afterward, enable the full duplex master mode of SPI4 and the full duplex
slave mode of SPI5, and enable the hardware NSS pins. Set the PCLK2 clock to
1.6 MHz as shown in Chap. 6. Then, set the prescaler values of SPI4 to 16 to
get 100 kHz baud rate. Finally, set frame format to Motorola, data size to 8 bits,
first bit to MSB first, clock polarity to low and clock phase to 1 edge, and disable
the CRC calculation. As the project is compiled and run, the counter values will
be transmitted from master to slave and slave to master, and LEDs will toggle
accordingly. The second example, with the C code given in Listing 8.10, repeats the
first example given in Listing 8.10 in non-blocking mode. When the transmission
and reception is complete, the LEDs are toggled in callback functions. The pin PA0,
in which the push button on the STM32F4 board is connected to, is configured in
interrupt mode. It triggers the SPI transmission when pressed. In order to execute
the code in Listing 8.11, first enable the SPI interrupts in the first example. Then,
replace the “main.c” file with code given in Listing 8.11. As the project is compiled
and run, the counter values will be transmitted from master to slave and slave to
master, and LEDs will toggle when the onboard push button is pressed.

Listing 8.11 Usage of the SPI module in non-blocking operation mode, the C code

/* USER CODE BEGIN PV */
uint8_t masterTxData = 0;
uint8_t slaveTxData = 0;
uint8_t masterRxData;
uint8_t slaveRxData;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
masterTxData++;
slaveTxData++;

HAL_SPI_TransmitReceive_IT(&hspi4, &masterTxData , &masterRxData ,
1);

HAL_SPI_TransmitReceive_IT(&hspi5, &slaveTxData , &slaveRxData , 1)
;

__NOP();
}
}

void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
if (hspi->Instance == SPI4)
{
if ((masterRxData % 5) == 0)
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HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
__NOP();
}
else if (hspi->Instance == SPI5)
{
if ((slaveRxData % 3) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
__NOP();
}
}
/* USER CODE END 0 */

8.3.4.2 Usage via C++ Language
We can benefit from the available functions in Mbed to use the SPI module via
C++ language. Here, the classes SPI and SPISlave will be of help. The function
frequency sets the baud rate of the SPI module. The function format sets the data
width, clock polarity, and clock phase of SPI. We next provide the detail of these
functions.

SPI(PinName mosi, PinName miso, PinName sclk, PinName ssel=NC)
/*
mosi: SPI master out, slave in pin.
miso: SPI master in, slave out pin.
sclk: SPI clock pin.
ssel: SPI chip select pin.
*/

SPISlave(PinName mosi, PinName miso, PinName sclk, PinName ssel)

frequency(int hz=1000000)
/*
hz: clock frequency in Hz.
*/

format(int bits, int mode = 0)
/*
bits: number of bits per SPI frame, it can be any value between

4-16
mode: clock polarity and phase mode, it can be any value between

0-3
*/

The function write of the SPI class can be used to transmit and receive data
in blocking mode. Moreover, the functions select and deselect can be used to
select and deselect the slave device via NSS pin, respectively. We next provide detail
of these functions.

write(int value)
/*
value: data to be sent to the SPI slave device.
*/

write(const char *tx_buffer , int tx_length , char *rx_buffer, int
rx_length)

/*
tx_buffer: pointer to the byte-array of data to write to the

device.
tx_length: number of bytes to write, may be zero.
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rx_buffer: pointer to the byte-array of data to read from the
device.

rx_length: number of bytes to read, may be zero.
*/

select(void)

deselect(void)

The functions receive, read, and reply of the SPISlave class can be used
to receive and then transmit data in blocking mode. The SPISlave class does not
support non-blocking mode in the current Mbed version. The receive function
checks SPI if data has been received. The function read gets data from the receive
buffer. The function reply fills the transmission buffer with the value to be written
out as slave on the next received message from the master. We next provide detail
of these functions.

reply(int value)
/*
value: data to be transmitted.
*/

read()

receive()

We next repeat the first example given in the previous section now in C++
language. We provide the corresponding code in Listing 8.12. To execute the code,
first make necessary hardware connections. Then, copy and paste the code to the
“main.cpp” file in the active project and run it. This code performs the same
operations as its C version.

Listing 8.12 Usage of the SPI module in blocking operation mode, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 2000

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);
SPI spiMaster(PE_6, PE_5, PE_2, PE_4); // SPI4
SPISlave spiSlave(PF_9, PF_8, PF_7, PF_6); // SPI5

uint8_t masterTxData = 0;
uint8_t slaveTxData = 0;
uint8_t masterRxData;
uint8_t slaveRxData;

int main()
{
spiMaster.frequency(100000);
spiMaster.format(8, 0);
spiSlave.frequency(100000);
spiSlave.format(8, 0);

while (true)
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{
masterTxData++;
slaveTxData++;

spiMaster.select();
spiMaster.write(masterTxData);
masterRxData = spiMaster.write(0x00);
if (spiSlave.receive())
{
slaveRxData = spiSlave.read();
spiSlave.reply(slaveTxData);
}
spiMaster.deselect();

if ((slaveRxData % 3) == 0)
greenLED = !greenLED;

if ((masterRxData % 5) == 0)
redLED = !redLED;

thread_sleep_for(WAIT_TIME_MS);
}
}

8.3.4.3 Usage via MicroPython
In MicroPython, the function send(send, timeout) is used to send data via SPI.
Here, send is the data array which will be transferred. It can be an integer or buffer
(byte) object. timeout is the timeout value in milliseconds and is set to 5000 by
default. The function recv(recv, timeout) is used to receive data via SPI. Here,
recv can be integer which represents the number of bytes to receive or buffer (byte)
object in which the received bytes will be saved. timeout is the timeout value in
milliseconds and is set to 5000 by default. Finally, the function send_recv(send,
recv, timeout) is used to send and receive data via SPI at the same time. Here,
send is the data array which will be transferred. It can be integer or buffer (byte)
object. recv is the data array in which the received bytes will be saved. It can only
be buffer (byte) object. timeout is the timeout value in milliseconds and is set to
5000 by default.

Let’s provide an example on the usage of SPI module via MicroPython. In this
example, we will use the loopback property of the SPI module. Here, MOSI and
MISO pins of SPI module are connected to each other. Hence, the transmitted data is
received by the same microcontroller. To do so, connect the pins PF8 and PF9 using
a jumper cable. The MicroPython code for this example is given in Listing 8.13. As
the code is executed, data is increased by one every 2 s. It is then transmitted and
received by the SPI5 module. If received data is a multiple of 3, then the green LED
toggles. If it is a multiple of 5, then the red LED toggles.

Listing 8.13 Example on the usage of the SPI module, the MicroPython code

import pyb
from struct import unpack

def main():
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masterTxData = 0
masterRxData = bytearray(1)
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
spiMaster = pyb.SPI(5)
spiMaster.init(pyb.SPI.MASTER, baudrate=2000000, polarity=0,

phase=1)
while True:

masterTxData += 1
spiMaster.send_recv(masterTxData , masterRxData)
data = unpack(’<B’, masterRxData)[0]
print(data)
if data % 3 == 0:

greenLED.value(not greenLED.value())
if data % 5 == 0:

redLED.value(not redLED.value())
pyb.delay(2000)

main()

8.4 Inter-integrated Circuit

The third digital communication type we will be using is the inter-integrated circuit
(I2C). We will next focus on its working principles. Then, we will consider the setup
and usage of the I2C module specific to the STM32F4 microcontroller.

8.4.1 I2CWorking Principles

I2C is generally used for communication between a microcontroller and one or more
external devices. More specifically, I2C is suitable for setting an external device
through its registers and reading data from it. It allows reaching a maximum of 128
such devices (with 7-bit address) in standard mode and 1024 devices (with 10 bit
address) in extended mode. In these modes, I2C simplifies circuit connection and
address management while reaching external devices.

We can explain I2C properties based on the definitions in Sect. 8.1 as follows.
I2C has a frame structure with start, address byte, ACK, data, and stop fields. We
provide a generic frame in Fig. 8.15 to explain these concepts better. I2C uses NRZ
for data encoding. I2C works in half duplex mode. I2C has both the master and
slave modes. The clock in synchronous communication is generated by the master
device. Moreover, the communication is always started by the master device. I2C has
standard and fast data transfer modes. In the former mode, the maximum baud rate
that can be reached is 100 kbits/s. In the latter mode, there are several sub options
as fast-mode, fast-mode plus, and high-speed (HS) mode. Maximum baud rates that
can be reached by these are 400 kbits/s, 1000 kbits/s, and 3.4 Mbits/s, respectively.

In order to explain working principles of I2C, we should take a look at the
connection diagram between the master and slave devices in Fig. 8.16. As can be
seen in this figure, I2C has two pins in operation as clock (SCL) and data (SDA).
Initially, the data line is in receive (input) mode for the slave device and transmit
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Fig. 8.15 A generic I2C frame

Fig. 8.16 I2C connection diagram between master and slave devices

(output) mode for the master device. Then, the master device sends address of the
slave device it needs to communicate with. Afterward, the master device can send or
receive data to the slave. This is declared in the read/write bit sent along the address.
The slave device knows what to do by checking this bit. The slave device sets its
data pin accordingly, sends the acknowledge (ACK) signal, and sends data to the
master if necessary.

8.4.2 I2CModules in the STM32F4Microcontroller

The STM32F4 microcontroller has three I2C modules as I2C1, I2C2, and I2C3. The
first two modules are connected to the LCD and external RAM on the STM32F4
board. Therefore, they should be used with caution.

Each I2C module in the STM32F4 microcontroller can work in either master or
slave mode. They can work as master transmitter, master receiver, slave transmitter,
and slave receiver. Each module waits in slave mode by default. Whenever a module
needs to transmit data, it generates the clock signal and starts working as master.
As data transmission ends, the module turns back to slave mode again. This setup
allows multi-master operation such that each connected module in the line can
work as both master and slave device in different times. Each slave device has
a programmable address composed of 7 or 10 bits. Moreover, there may be two
addresses for each device. In this setting, the module can work as if it is two different
devices.
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Fig. 8.17 Block diagram of an I2C module in the STM32F4 microcontroller

I2C modules use the APB1 peripheral clock (PCLK1). There are two speed
modes as standard and fast with 100 kHz and 400 kHz clock frequency, respectively.
In order to have the fast mode, the APB1 clock should be set to a value higher than
4 MHz.

We provide block diagram of a generic I2C module available in the STM32F4
microcontroller in Fig. 8.17. As can be seen in this figure, there are two pins in
the module as SCL and SDA as explained before. These pins are set in open-drain
mode. Besides, they are bidirectional. Hence, each pin can work either as output
or input. To perform these operations, there is a specific GPIO control block. The
clock control module is responsible for clock signal generation if the I2C module
works as the master device. If the I2C module works as a slave device, then the
clock control module works to sample the incoming (data) signal. The data control
block is responsible for reading and writing data. The register block keeps all the
information necessary to set the I2C module properties.

There is a maximum time limit to suppress spikes in data and clock signals I2C
standard. These time limits are 50 ηs for standard and fast plus modes. It becomes
10 ηs for the high-speed (HS) standard. There are two filter blocks to suppress these
spikes in the designated time in the STM32F4 microcontroller. These are labeled as
analog and digital filters in Fig. 8.17. The analog filter has fixed parameters. Hence,
it can only be enabled or disabled. On the other hand, the coefficients in the digital
filter can be adjusted.
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Fig. 8.18 I2C configuration
in STM32CubeMX

8.4.3 I2C Setup in the STM32F4Microcontroller

We will consider I2C setup in this section. Therefore, we will start with the C
language based setup. This will be followed by C++ and MicroPython based setup
operations.

8.4.3.1 Setup via C Language
We will benefit from STM32CubeMX to set up the I2C module properties in C
language. At this stage, we assume that a project has already been created under
STM32CubeIDE as given in Sect. 3.1.3. In order to set up I2C via STM32CubeMX,
first open the “Device Configuration Tool” window by clicking the “.ioc” file in the
project explorer window. Then, configuration can be done as shown in Fig. 8.18. We
will provide details of this operation next.

In order to use the I2C module, SCL and SDA pins should be configured first. To
do so, click on the GPIO pin with I2C capability in the STM32F4 microcontroller in
the STM32CubeMX interface. Afterward, select the GPIO type as “I2Cx_SDA” or
“I2Cx_SCLA” in the “Device Configuration Tool” window as in Fig. 8.18. To note
here, x can be 1, 2, or 3 to denote I2C1, I2C2, or I2C3, respectively.

Once the I2C pins are selected and configured, click the set I2C module in
the “Connectivity” section from the left menu of STM32CubeMX. Then, mode
configuration can be done as in Fig. 8.19. Here, select the “I2C” for the I2C mode.
The other options “SMBus-Alert-Mode” and “SMBus-two-wire-interface” can be
selected for other modes of the I2C module. However, we will not deal with these
modes in this chapter.



8.4 Inter-integrated Circuit 249

Fig. 8.19 I2C mode menu in
STM32CubeIDE

After configuring the I2C mode, its settings can be configured from the opened
“Parameter Settings” tab in the “Configuration” menu as in Fig. 8.20. Here, I2C
speed mode can be selected as one of “Standard Mode” or “Fast Mode.” I2C clock
speed can be set in Hz under “Master Features” section. To note here, “Fast Mode”
is only available if the PCLK1 is set to work above 4 MHz. The primary address
length can be selected as 7 or 10 bits in the “Slave Features” section. Associated to
this value, primary slave address can be set to a value between 0 and 127 or 0 and
1023, respectively. To note here, the slave address will be shifted to left by 1 bit. For
example, if you set the slave address as 80 (0x50 in hexadecimal form), then the
actual address will be 160 (0xA0) for the read access and 161 (0xA1) for the write
access. The analog and digital filters for SDA and SC lines are configured in the
“Timing Configuration” section. Here, the analog filter can be enabled or disabled.
Coefficient of the digital filter can be set a value between 0 and 15, where 0 disables
the filter. To note here, the analog filter is enabled and digital filter is disabled by
default.

Similar to UART and SPI, I2C can operate in two operation modes as blocking
(polling) or non-blocking (interrupt). If interrupt generation is not required, then this
step can be skipped. Otherwise, the I2C interrupt should be enabled from the NVIC
tab in the configuration menu as in Fig. 8.20. The interrupt priority can be changed
under the “System Core - NVIC” section. To note here, it is suggested to lower the
I2C interrupt priority since the HAL functions use the SysTick interrupt to create
precise 1 ms ticks for internal operations and the HAL_Delay function. The SysTick
interrupt has the highest priority among peripheral units. Hence, assigning a lower
priority to the I2C interrupt will not affect it. Otherwise, precision of the HAL_Delay
function may degrade.

8.4.3.2 Setup via C++ Language
We can benefit from Mbed and available functions there to adjust the I2C module
properties. To do so, we should first adjust SDA and SCK pins. This can be done
by the classes I2C and I2CSlave for the master and slave modes, respectively. We
should supply SDA and SCL pin names to these classes. Parameters of both class
functions, such as frequency and slave address, can be configured after initialization.
Moreover, the operation mode can be modified as blocking or non-blocking, and the
callback function can be called whenever an interrupt occurs in non-blocking mode.
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Fig. 8.20 I2C configuration menu in STM32CubeMX

8.4.3.3 Setup via MicroPython
MicroPython has the I2C class to perform I2C operations. The I2C module is created
using the function pyb.I2C(bus). Here, bus represents the I2C module number.
I2C3 module is defined in the MicroPython firmware with the pins PA8 as SCL
and PC9 as SDA. After the I2C module is created, it can be initialized using the
function init(mode, addr, baudrate, gencall). Here, mode is used to set
the I2C module as master or slave using I2C.MASTER or I2C.SLAVE, respectively.
The addr is the 7-bit slave address. The baudrate is the SCL clock rate. The
gencall is used to enable or disable general call property. It can be enabled or
disabled by setting it as True or False, respectively.
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8.4.4 I2C Usage in the STM32F4Microcontroller

As the I2C module is setup in the previous section, we will focus on its usage in this
section. Therefore, we will benefit from C, C++, and MicroPython languages.

8.4.4.1 Usage via C Language
We can benefit from the HAL library functions to use the I2C module
in C language after setting its properties in STM32CubeMX as explained
in Sect. 8.4.3. There are seven functions for the blocking (polling) mode
operation of the I2C module. The functions HAL_I2C_Master_Transmit,
HAL_I2C_Slave_Transmit, and HAL_I2C_Mem_Write can be used to send data.
Likewise, the functions HAL_I2C_Master_Receive, HAL_I2C_Slave_Receive,
and HAL_I2C_Mem_Read can be used to receive data in blocking mode. The
function HAL_I2C_IsDeviceReady checks whether the target device is ready
for communication. We next provide detail of all these functions.

HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t
DevAddress , uint8_t *pData, uint16_t Size, uint32_t Timeout)

/*
hi2c: pointer to the I2C_HandleTypeDef struct
DevAddress: target device address
pData: pointer to the data buffer
Size: size of data to be sent
Timeout: timeout duration
*/

HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t
DevAddress , uint8_t *pData, uint16_t Size, uint32_t Timeout)

/*
Size: size of data to be received
*/

HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
Size: size of data to be sent
*/

HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
Size: size of data to be received
*/

HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress ,
uint16_t MemAddress , uint16_t MemAddSize , uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
MemAddress: internal memory address
MemAddSize: size of internal memory address
Size: size of data to be sent
*/

HAL_I2C_Mem_Read(I2C_HandleTypeDef * hi2c, uint16_t DevAddress ,
uint16_t MemAddress , uint16_t MemAddSize , uint8_t *pData,
uint16_t Size, uint32_t Timeout)

/*
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Size: size of data to be received
*/

HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t
DevAddress , uint32_t Trials, uint32_t Timeout)

/*
Trials: number of trials
*/

There are six functions for the non-blocking (interrupt) mode opera-
tion of the I2C module. The functions HAL_I2C_Master_Transmit_IT,
HAL_I2C_Slave_Transmit_IT, and HAL_I2C_Mem_Write_IT can be used to
send data. Likewise, the functions HAL_I2C_Master_Receive_IT, HAL_I2C
_Slave_Receive_IT, and HAL_I2C_Mem_Read_IT can be used to receive data
in blocking mode.

If the I2C interrupt is enabled and data is sent or received in master
mode, then the callback function HAL_I2C_MasterTxCpltCallback or
HAL_I2C_MasterRxCpltCallback is called. Similarly, if the I2C interrupt
is enabled and data is sent or received in slave mode, then the callback
function HAL_I2C_SlaveTxCpltCallback or HAL_I2C_SlaveRxCpltCallback
is called. Moreover, if data is sent or received in master mode using the
function HAL_I2C_Mem_Write_IT or HAL_I2C_Mem_Read_IT, then the function
HAL_I2C_MemTxCpltCallback or HAL_I2C_MemRxCpltCallback is called,
respectively. To note here, these functions are generated in weak form (without
any content) automatically in the “STM32F4xx_hal_i2c.c” file when a project is
created. This means when the reader forgets defining the actual functions, the code
still runs. When the user defines his or her function, then these weak functions are
ignored. We next provide detail of these functions.

HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t
DevAddress , uint8_t *pData, uint16_t Size)

/*
hi2c: Pointer to the I2C_HandleTypeDef struct
DevAddress: target device address
pData: pointer to the data buffer
Size: size of data to be sent
*/

HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t
DevAddress , uint8_t *pData, uint16_t Size)

/*
Size: size of data to be received
*/

HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData
, uint16_t Size)

/*
Size: size of data to be sent
*/

HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData,
uint16_t Size)

/*
Size: size of data to be received
*/
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HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress
, uint16_t MemAddress , uint16_t MemAddSize , uint8_t *pData,
uint16_t Size)

/*
MemAddress: internal memory address
MemAddSize: size of internal memory address
Size: size of data to be sent
*/

HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef * hi2c, uint16_t DevAddress
, uint16_t MemAddress , uint16_t MemAddSize , uint8_t *pData,
uint16_t Size)

/*
Size: size of data to be received
*/

HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef * hi2c)

HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef * hi2c)

HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef * hi2c)

HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef * hi2c)

HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef * hi2c)

HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef * hi2c)

Let’s provide two examples on the usage of I2C module via C language. Based on
the property of the I2C communication, we need two STM32F4 boards (one working
as master, the other as slave) for operation. Therefore, the following examples are
formed for this setup. The reader can use the same code for both master and slave
devices. However, the code line #define MASTER should be uncommented for the
master device. Likewise, the code line #define SLAVE should be uncommented
for the slave device. Finally, we should connect the pins PB11 and PB10 of the
STM32F4 board (working as master) to the pins PC9 and PA8 of the STM32F4
board (working as slave), respectively. Ground pin of both boards should be
connected together.

The first example, with the C code given in Listing 8.14, aims to familiarize the
reader with the setup and usage of the I2C module. Here, I2C2 and I2C3 modules are
configured as I2C master and slave on the two boards, respectively. There are two
counter values in the code. The first one will be sent to the slave from the master.
Upon receiving this value by the slave, the green LED connected to pin PG13 of the
STM32F4 board (working as slave) is toggled if mod 3 of the received counter value
is zero. Afterward, the second counter will be sent to the master from slave. Upon
receiving this value by master, the red LED connected to pin PG14 of the STM32F4
board (working as master) is toggled if mod 5 of the received counter value is zero.
This operation will repeat every 2 s.

Listing 8.14 Usage of the I2C module in blocking transmit operation mode, the C code

/* USER CODE BEGIN PD */
#define MASTER



254 8 Digital Communication

//#define SLAVE
/* USER CODE END PD */

/* USER CODE BEGIN PV */
#ifdef MASTER
uint8_t masterTxData = 0;
uint8_t masterRxData;
#endif

#ifdef SLAVE
uint8_t slaveTxData = 0;
uint8_t slaveRxData;
#endif
/* USER CODE END PV */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
#ifdef MASTER
masterTxData++;
HAL_I2C_Master_Transmit(&hi2c2, (uint16_t)160, &masterTxData , 1,

10000);

HAL_I2C_Master_Receive(&hi2c2, (uint16_t)160, &masterRxData , 1,
10000);

if ((masterRxData % 5) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);

HAL_Delay(2000);
#endif

#ifdef SLAVE
slaveTxData++;
HAL_I2C_Slave_Receive(&hi2c3, &slaveRxData , 1, 10000);
if ((slaveRxData % 3) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
HAL_I2C_Slave_Transmit(&hi2c3, &slaveTxData , 1, 10000);
#endif
}
/* USER CODE END WHILE */

/* USER CODE END 3 */

In order to execute the code in Listing 8.14, create an empty project (for each
board separately); configure the PB11 and PB10 pins as I2C2_SDA and I2C2_SCL,
respectively. Also, set pins PC9 and PA8 as I2C3_SDA and I2C3_SCL, respectively.
Afterward, enable the I2C mode of I2C2 and I2C3 modules. Set the I2C speed mode
to standard, frequency to 100 kHz, and slave address to 80 (0x50). As the project is
compiled and run, counter values will be transmitted from the master to slave and
slave to master, and LEDs will toggle accordingly.

The second example, with the C code given in Listing 8.15, repeats the first
example given in Listing 8.14 in non-blocking mode. When the transmission and
reception is complete, the LEDs are toggled in callback functions. The pin PA0, the
onboard push button on the STM32F4 board (working as master) is connected to, is
configured in interrupt mode. It triggers the transmission when pressed. In order to
execute the code, replace the “main.c” file with code given in Listing 8.15 for both
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projects (for the master and slave boards). Do not forget to enable I2C interrupts. As
the projects are compiled and run, the counter values will be transmitted from the
master to slave and slave to master, and LEDs will toggle when the onboard push
button on the STM32F4 board (working as master) is pressed.

Listing 8.15 Usage of the I2C module in non-blocking operation mode, the C code

/* USER CODE BEGIN PD */
#define MASTER
//#define SLAVE
/* USER CODE END PD */

/* USER CODE BEGIN PV */
#ifdef MASTER
uint8_t masterTxData = 0;
uint8_t masterRxData;
#endif

#ifdef SLAVE
uint8_t slaveTxData = 0;
uint8_t slaveRxData;
#endif
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
#ifdef MASTER
masterTxData++;
HAL_I2C_Master_Transmit(&hi2c2, (uint16_t)160, &masterTxData , 1,

1000);
HAL_I2C_Master_Receive_IT(&hi2c2, (uint16_t)160, &masterRxData ,

1);
#endif
}
}

#ifdef MASTER
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
if ((masterRxData % 5) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
}
#endif

#ifdef SLAVE
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
if ((slaveRxData % 3) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);

slaveTxData++;
HAL_I2C_Slave_Transmit(&hi2c3, &slaveTxData , 1, 1000);
HAL_Delay(100);
HAL_I2C_Slave_Receive_IT(&hi2c3, &slaveRxData , 1);
}
#endif
/* USER CODE END 0 */
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/* USER CODE BEGIN 2 */
#ifdef SLAVE
HAL_I2C_Slave_Receive_IT(&hi2c3, &slaveRxData , 1);
HAL_I2C_Slave_Transmit_IT(&hi2c3, &slaveTxData , 1);
#endif
/* USER CODE END 2 */

8.4.4.2 Usage via C++ Language
We can benefit from the available functions under Mbed to use the I2C module via
C++ language. Here, the functions of I2C and I2CSlave classes will be of help.
The function frequency of both classes can be used to configure the speed of I2C
module. We next provide detail of these functions.

I2C(PinName sda, PinName scl)
/*
sda: I2C data line pin
scl: I2C clock line pin
*/

I2CSlave(PinName sda, PinName scl)

frequency(int hz)
/*
hz: the bus frequency in Hertz
*/

The functions write and read of the I2C class can be used to transmit and
receive data in blocking mode. Moreover, the functions start and stop of the I2C
class can be used to send start and stop conditions to the I2C line. We next provide
detail of these functions.

int write(int data)
/*
data: data to write to the I2C line
*/

int write(int address, const char *data, int length, bool
repeated = false)

/*
address: 8-bit I2C slave address [ addr | 0 ]
data: pointer to the byte-array data to send
length: number of bytes to send
repeated: repeated start if true.
*/

int read(int address, char *data, int length, bool repeated =
false)

/*
address: 8-bit I2C slave address [ addr | 1 ]
data: pointer to the byte-array to read data into
length: number of bytes to read
*/

int read(int ack)
/*
ack: indicates if the byte is to be acknowledged (1 = acknowledge

)
*/

start(void)
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stop(void)

The functions write and read of the I2CSlave class can be used to transmit
and receive data in blocking mode. The address function sets the slave address.
We next provide detail of these functions.

int write(int data)
/*
data: value to write.
*/

int write(const char *data, int length)
/*
data: pointer to the buffer containing the data to be sent.
length: number of bytes to send.
*/

int read(void)

int read(char *data, int length)
/*
data: pointer to the buffer to read data into.
length: number of bytes to read.
*/

address(int address)
/*
address: the address to set for the slave (least significant bit

is ignored).
*/

enum RxStatus{
NoData = 0,
ReadAddressed = 1,
WriteGeneral = 2,
WriteAddressed = 3

};

NoData: The slave has not been addressed.
ReadAddressed: The master has requested a read from this slave.
WriteAddressed: The master is writing to this slave.
WriteGeneral: The master is writing to all slaves.

We next modify the example in Listing 8.14 to work under Mbed in C++
language. The reader should follow the steps given there to form the hardware setup.
Then, the C++ code given in Listing 8.16 should be used for the master and slave
devices (STM32F4 boards) to execute the example.

Listing 8.16 Usage of the I2C module in blocking operation mode, the C++ code

#include "mbed.h"

#define MASTER
// #define SLAVE

#define WAIT_TIME_MS 2000

#ifdef MASTER
DigitalOut redLED(LED2);
I2C i2c(PB_11, PB_10); // i2c2
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uint8_t masterTxData = 0;
uint8_t masterRxData = 0;
#endif

#ifdef SLAVE
DigitalOut greenLED(LED1);
I2CSlave i2c(PC_9, PA_8); // i2c3

uint8_t slaveTxData = 0;
uint8_t slaveRxData = 0;
#endif

#define SLAVEADDRESS 80

int main()
{

i2c.frequency(100000);

#ifdef SLAVE
i2c.address(SLAVEADDRESS);
#endif

while (true)
{

#ifdef MASTER
masterTxData++;
i2c.write(SLAVEADDRESS , (const char *)(&masterTxData), 1, false);
i2c.read(SLAVEADDRESS , (char *)(&masterRxData), 1);

if ((masterRxData % 5) == 0)
redLED = !redLED;

thread_sleep_for(WAIT_TIME_MS);
#endif

#ifdef SLAVE
if (i2c.receive() == i2c.NoData)
{
slaveRxData = i2c.read();
if ((slaveRxData % 3) == 0)
greenLED = !greenLED;

slaveTxData++;
i2c.write(slaveTxData);
}
#endif
}
}

8.4.4.3 Usage via MicroPython
In MicroPython, the function scan() is used to scan all 7-bit slave addresses from
0x01 to 0x7F. The function returns the list of addresses which responded to it.
This function can only be used in master mode. The function is_ready(addr) is
used to check only the slave device with address value addr instead of scanning
all address values. This function can only be used in master mode. The function
send(send, addr, timeout) is used to send data via I2C. Here, send is the data
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array which will be transmitted. It can be an integer or buffer (byte) object. The addr
is the address of the slave device and can only be used in master mode. timeout
is the timeout value in milliseconds and is set to 5000 by default. The function
recv(recv, addr, timeout) is used to receive data via I2C. Here, recv can be
integer which represents the number of bytes to receive or buffer (byte) object in
which received bytes will be saved. The addr is the address of the slave device
and can only be used in master mode. timeout is the timeout value in milliseconds
and is set to 5000 by default. The function mem_write(data, addr, memaddr,
timeout, addr_size) is used to send data to a specific memory address of a slave
device via I2C. Here, data is the data array which will be transferred. It can be an
integer or buffer (byte) object. The addr is the address of the slave device. The
memaddr is the memory location of the slave device. The timeout is the timeout
value in milliseconds and is set to 5000 by default. The addr_size is used to
select the bit size of the memaddr. It can be selected as 8 or 16. This function can
only be used in master mode. The function mem_read(data, addr, memaddr,
timeout, addr_size) is used to receive data from a specific memory address of
a slave device via I2C. Here, data can be integer which represents the number of
bytes to receive or buffer (byte) object in which the received bytes will be stored.
The addr is the address of the slave device. The memaddr is the memory location
of the slave device. The timeout is the timeout value in milliseconds and is set to
5000 by default. The addr_size is used to select the bit size of the memaddr. It can
be selected as 8 or 16. This function can only be used in master mode.

We next provide an example on forming an I2C communication between the
two STM32F4 boards, one working as master and the other as slave. We provide
the codes to be used in the master and slave boards in Listings 8.17 and 8.18,
respectively. The address for the slave device is set as 0xB0 Listing 8.18. The slave
device reads 1 byte data from the master in 0.5 s intervals in an infinite loop. If the
received data is 0x67 (the character ‘g’ in ASCII format), then the green LED is
toggled. If the received data is 0x72 (the character ‘r’ in ASCII format), then the
red LED is toggled. The master device sends 1 byte in an infinite loop. When the
slave device receives it, the master sends the next data. Hence, the character sent
from the master always switches between ‘g’ and ‘r’.

Listing 8.17 MicroPython code for the master device in I2C communication

import pyb

def main():
i2cMaster = pyb.I2C(3)
i2cMaster.init(pyb.I2C.MASTER)
data = b’g’
while True:

i2cMaster.send(data, 0xB0)
if data == b’g’:

data = b’r’
elif data == b’r’:

data = b’g’
pyb.delay(500)

main()
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Listing 8.18 MicroPython code for the slave device in I2C communication

import pyb
from struct import unpack

def main():
i2cSlave = pyb.I2C(3)
i2cSlave.init(pyb.I2C.SLAVE, addr=0xB0)
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
while True:

try:
RxData = i2cSlave.recv(1)

except OSError:
pass

data = unpack(’<B’, RxData)[0]
if data[0] == 0x67:

greenLED.value(not(greenLED.value()))
elif data[0] == 0x72:

redLED.value(not(redLED.value()))

main()

8.5 Controller Area Network

The fourth digital communication type we will be considering is the controller
area network (CAN). We will next focus on its working principles. Then, we
will consider the setup and usage of the CAN module specific to the STM32F4
microcontroller.

8.5.1 CANWorking Principles

CAN is the serial communication type extensively used in automotive industry.
It has low error rate and does not need a main controller for operation. In CAN
communication, there can be several devices connected via two cables (each having
120 � terminal resistance). This line is called CAN bus with properties set by the
ISO 11898 standard. CAN communication can best be explained by open systems
interconnection (OSI) model. OSI is formed by ISO for multilayer communication.
For more information on the OSI model, please see [9]. CAN bus forms the lowest
two layers of the OSI model as data link and physical layer. The data link layer
is available in the microcontroller as the CAN module. The physical layer should
be formed by an external transceiver which converts data to electrical CAN signal.
Higher layers of OSI should be formed by the user in code.

We can explain working principles of CAN (and CAN bus) based on the
definitions in Sect. 8.1. CAN has five frames called data, extended data, remote,
error, and overload. Among these, data frame is the most important one. We will
focus on it next. For more information on other frames, please see [5]. Data frame
is formed by start of frame (SOF) bit, arbitration field, control field, data field,
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CRC field, ACK, and EOF. SOF is always dominant (logic level 0). Arbitration
field is composed of ID and remote transmission request (RTR) bit. ID is the 11 bit
identification number of the submitted message. RTR indicates that the frame does
not contain data and it will be sent as remote frame. Control field is composed of
IDE, r0, and DLC. Here, IDE is the identifier extension bit. If this bit has value logic
level 0, 11 bit ID is used. Otherwise, 29 bit ID is used. This indicates the extended
data frame. r0 is the reserved bit set to logic level 0. DLC stands for the data length
code. It is 4 bits and keeps size of the submitted data in bytes. Data field keeps the
data to be submitted. It has length N×8 bits. N should be between 0 and 8. Hence,
data length can be between 0 and 64 bits. If data length is zero, this indicates we
have a remote frame. CRC stands for the cyclic redundancy check. The CRC field is
composed of 16 bits of which 15 are for CRC and a logic level 1 bit as suffix. ACK
is the acknowledge value composed of two bits. Each node sends back the ACK
value to confirm data has been received. This is the case even if the node will not
use data in the received frame. The ACK value will be 01 if there is no error in data
reception. The ACK value will be 11 if there is error in data reception. Finally, EOF
stands for the end of frame value which is composed of seven bits with logic level 1
value.

Data encoding used in CAN is NRZ with one difference. Since 0 V corresponds
to logic level 1 and a voltage value higher than 1.5 V represents logic level 0 in CAN,
logic levels are inverted. However, the reader should not confuse this with NRZi
data encoding. Instead, we will still call data encoding in CAN as NRZ with the
mentioned logic level representations. There are two separate usages of half and full
duplex modes in CAN. Data transfer between the microcontroller and transceiver
is in full duplex mode. This is because there is two-sided data transfer in the CAN
Rx and Tx pins. On the other hand, the CAN bus itself uses half duplex mode in
communication since there is one-sided data transfer in the line. The master slave
option is not applicable to CAN bus. Instead, there are specific protocols called
CSMA/CD for this purpose. CSMA stands for carrier-sense multiple access. CD
stands for collision detection. For more information on these methods, please see
[5].

The CAN bus does not carry a common clock signal. Hence, it is asynchronous.
The bus speed is set to a constant value during design phase. The automotive
environment has heavy noise. Moreover, data line lengths between nodes can reach
100 meters or more. Therefore, it is important for the nodes to synchronize the
baud rate in communication. The first synchronization is done by the start bit at the
beginning of data. This is called hard synchronization. If a synchronization shift is
detected in the following operations, then synchronization is done again. For more
information on this topic, please see [3].

Output voltage from the STM32F4 microcontroller is not compatible with the
standard CAN bus voltage levels. Hence, there should be a transceiver connected
to the microcontroller for CAN bus. In other words, the transceiver converts the
signals at the CAN Tx and Rx pins of the microcontroller to CAN bus voltage levels.
The CAN bus has a differential line. Let’s call the lines in this setup as CAN high
and CAN low. The difference of the two signals (CAN high - CAN low) will give
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us the actual CAN signal. Let’s call this difference as CANDiff. In representing
logic level 1, CAN high and low become 2.5 V. Hence, CANDiff becomes 0 V,
whereas, in representing logic level 0, it is sufficient to have CANDiff to have a
voltage value higher than 1.5 V. In the CAN bus standard, logic levels 0 and 1 are
called dominant and recessive, respectively. For more information on them, please
see [2]. Furthermore, there can be more than one device/node connected to the line.
To note here, devices in the CAN bus are specifically called as nodes since they are
not separate devices but parts of one system (such as an automotive).

The ISO 11898 standard specifies that the CAN bus transceiver should be able
to drive a 40 m bus at 1 Mbits/s. However, this may not be satisfied by the length
of used cable. Therefore, the user should take this into account while designing the
CAN communication system.

We provide block diagram of a generic CAN module and CAN bus in Fig. 8.21.
As can be seen in this figure, the CAN bus is composed of two wires as CAN high
and low. These wires are connected by terminal resistances with 120 � value. There
may be more than one node connected to the bus. Each node is composed of one
CAN controller, CAN transceiver, and software on the microcontroller for CAN
communication. CAN transceiver is connected to the CAN bus by CAN high and
low pins. As a reminder, these pins form a differential pair. With this setting, the
CAN transceiver converts data coming from CAN controller to CAN differential
voltage. CAN controller and CAN transceiver are connected by CAN Rx and Tx
pins. The CAN Rx pin transmits data coming from transceiver to data controller.
The CAN Tx pin transmits data from data controller to transceiver.

The CAN module works as follows. If a node does not transmit data, it stays
in recessive level. If the CAN bus is empty and no other node is transmitting data,
we can send data to another node. However, the transmitter should check the bus
for a possible voltage change in the line after sending each bit. There may be more
than one transmission attempt at the same time. There is a specific structure for
this operation. For more information on this topic, please see [5]. Finally, there is
bit stuffing operation during data transfer in CAN. In this case, if five successive
bits come during transmission, the following sixth bit is inverted and it is not
considered in operation. The aim in this operation is to ensure that nodes can make
synchronization.

Let’s focus on frame handling in CAN communication. There is an inter-frame
space before and after sending each frame. This ensures a time tolerance for the
transmitter and receiver. The inter-frame space is formed by 11 bits composed of
logic level 1 values. If a node sends a frame from the CAN bus, all nodes connected
to the bus receive this frame. As a reminder, each frame has an ID section. Hence,
each node checks this ID and decides on whether the frame is sent to them or not.
This is done by masking and filtering operations. We can explain this operation
by a pseudocode as if( (ID & Mask) == (Filter & Mask)), then accept the
frame; else discard the frame.
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Fig. 8.21 Generic CAN modules and CAN bus connection diagram

8.5.2 CANModules in the STM32F4Microcontroller

The exact name for the CAN module in the STM32F4 microcontroller is basic
extended CAN, bxCAN. This module does not have PHY in itself. It only has a
core section modifying data packets. The bxCAN can support only CAN protocols
version 2.0 A and B. The STM32F4 microcontroller has two bxCAN modules.
These are CAN1 (master bxCAN) and CAN2 (slave bxCAN). The master bxCAN
can be used for managing the communication between a slave bxCAN and 512 byte
SRAM. The slave bxCAN does not have direct access to SRAM. The two bxCANs
share the 512 byte SRAM. To note here, the master and slave naming originates
from STM. Hence, they do not correspond to the standard master and slave notations
introduced in Sect. 8.1.

We provide block diagram of one bxCAN module in the STM32F4 microcon-
troller in Fig. 8.22. We will explain the CAN topics based on this block diagram
specific to the STM32F4 microcontroller. Other microcontrollers may have different
settings in their CAN modules.

In Fig. 8.22, the GPIO control block configures related GPIO pins so that the
CAN module and transceiver can communicate. CAN1 and CAN2 modules have
different pins used for this purpose. CAN1 and CAN2 modules share the GPIO
control, CAN core, and Filters blocks. There are dedicated Rx FIFO blocks and
Tx mailbox blocks for CAN1 and CAN2 modules. CAN core block is responsible
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Fig. 8.22 Block diagram of the bxCAN module in the STM32F4 microcontroller

for receiving and transmitting frame, ACK and CRC control, clock generation, and
synchronization. While receiving a frame from the CAN bus, the received frame is
checked by the CAN core block in terms of ACK and CRC. Afterward, only the
Arbitration, Control, and Data fields in the frame are sent to the Filters block for
filtering and masking operation. The Filters block consists of 28 programmable
filters and masks shared by CAN1 and CAN2. This block is responsible for
accepting or discarding the incoming frame by checking its ID field. If the frame
is accepted, then it is sent to the Rx FIFO block. There are four FIFO buffers for
Rx in CAN1 and CAN2, dedicated two for each. We can direct different frames
to different FIFO buffers. Each FIFO buffer consists of three Rx mailboxes used to
receive incoming frame. Each mailbox is a buffer and used to handle a new incoming
frame when the present one is processed. When the software reads data inside the
mailbox, it is emptied automatically. If all mailboxes are full, then further incoming
frames will be discarded.

While transmitting a frame to the CAN bus, the Arbitration, Control, and
Data fields in the frame are obtained from Tx mailbox blocks by the CAN core
block. There are six Tx mailboxes, three dedicated for CAN1 and three for CAN2
separately. There is a priority mechanism here. Hence, there is no FIFO operation.
This means that the prioritized frame enters the mailbox. The ACK and CRC control
bits are generated according to these fields, appended to the frame in CAN core
block, and the frame is sent to the CAN bus. Afterward, the used mailbox is emptied
automatically. If an error occurs during transfer, there are options such as automatic
resend and discard.



8.5 Controller Area Network 265

The bxCAN module in the STM32F4 microcontroller has a loopback mode. This
mode connects the Tx and Rx pins within the module without any need of external
connection. This way, the CAN communication tests can be performed. We will use
this option in the following section.

8.5.3 CAN Setup in the STM32F4Microcontroller

We will consider CAN setup in this section. Therefore, we will start with the C
language based setup. This will be followed by C++ and MicroPython language
based setup operations.

8.5.3.1 Setup via C Language
We will benefit from STM32CubeMX to setup CAN module properties in C
language. At this stage, we assume that a project has already been created
under STM32CubeIDE as explained in Sect. 3.1.3. In order to set up CAN via
STM32CubeMX, first open the “Device Configuration Tool” window by clicking
the “.ioc" file in the project explorer window. Then, configuration can be done as
shown in Fig. 8.23. We will provide details of this operation next.

In order to use the CAN module, Tx and Rx pins should be configured first. To
do so, click on the GPIO pin with CAN capability on the STM32F4 microcontroller
in STM32CubeMX interface. Afterward, select the GPIO type as “CANx_TX” or
“CANx_RX” in the “Device Configuration Tool” window as in Fig. 8.23. To note
here, x can be 1 or 2 to denote CAN1 or CAN2, respectively.

Once CAN pins are selected and configured, click the set CAN module under
the “Connectivity” section from the left STM32CubeMX menu. Then, mode
configuration can be done in this section as in Fig. 8.24. Here, the CAN module
can be activated by clicking the “Activated” checkbox.

Fig. 8.23 CAN module
configuration in
STM32CubeMX
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Fig. 8.24 CAN mode menu
in STM32CubeMX

Fig. 8.25 CAN
configuration menu in
STM32CubeIDE

After activating the CAN module, its parameters can be set from the opened
“Parameter Settings” tab in the “Configuration” menu as in Fig. 8.25. Here, baud
rate of the CAN module can be configured using “Prescaler (for Time Quantum),”
“Time Quanta in Bit Segment 1,” and “Time Quanta in Bit Segment 2” options
under “Bit Timing Parameters.” We will use the “Automatic Retransmission” option
under “Basic Parameters” and “Operating Mode” to select the CAN mode under
“Advanced Parameters.” The rest of the options can be left in their default settings.
The “Automatic Retransmission” can be selected as “Enabled” or “Disabled.”
This is to set or reset resending the data packet if it fails in the first attempt.
The “Operating Mode” can be selected as “Normal,” “Loopback,” “Silent,” or
“Loopback combined with Silent.”

If interrupt generation is not required, then this step can be skipped. Otherwise,
the CAN interrupt should be enabled from the NVIC tab in the configuration menu
as in Fig. 8.25. The interrupt priority can be changed under the “System Core -
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NVIC” section. To note here, it is suggested to lower the CAN interrupt priority
since HAL functions use the SysTick interrupt to create precise 1 ms ticks for
internal operations and the HAL_Delay function. The SysTick interrupt has the
highest priority among peripheral units. Hence, assigning a lower priority to the
CAN interrupt will not affect it. Otherwise, precision of the HAL_Delay function
may degrade.

8.5.3.2 Setup via C++ Language
We can benefit from Mbed and available functions there to adjust the CAN module
properties. To do so, we should first adjust Tx and Rx pins. This can be done by the
CAN class. Hence, we should supply Tx and Rx pin names to the class. The frequency
parameter can be configured after initialization. Moreover, a callback function can
be called whenever an interrupt occurs.

8.5.3.3 Setup via MicroPython
MicroPython has the CAN class to handle CAN operations. The CAN module
is created using the function pyb.CAN(bus). Here, bus represents the CAN
module number. CAN1 and CAN2 modules are defined in the MicroPython
firmware. Pins PB8 and PB9 are set as Rx and Tx for CAN1. Pins PB12 and
PB13 are set as Rx and Tx for CAN2. As the CAN module is created, it can
be initialized using the function init(mode, prescaler, sjw, bs1, bs2,
auto_restart, baudrate). Here, the mode is used to set the CAN mode using
NORMAL, LOOPBACK, SILENT, or SILENT_LOOPBACK. The prescaler, sjw, bs1,
and bs2 are used together to set the baud rate. The time quanta (tq) is the
basic unit of the baud rate calculation for the CAN module. It is calculated by
dividing prescaler value by PCLK1 frequency. After tq is set, bittime can be
calculated using the equation bittime = (sjw + bs1 + bs2)*tq. Here, sjw is
the resynchronization jump width in units of the time quanta and can be selected
as 1, 2, 3, or 4. The bs1 is the location of the sample point in units of the time
quanta and can be selected between 1 and 1024. The bs2 is the location of the
transmit point in units of the time quanta and can be selected between 1 and 16.
Then, the baudrate can be calculated by 1/bittime. If baudrate is directly set
using baudrate input, it overrides the prescaler, sjw, bs1, and bs2 selections.
Finally, the auto_restart is used to restart the communication after bus-off state
by setting it to True. If this property is not used, then it is set as False.

8.5.4 CAN Usage in the STM32F4Microcontroller

As the CAN module is set up in the previous section, we will focus on its usage in
this section. Therefore, we will benefit from C, C++, and MicroPython languages.

8.5.4.1 Usage via C Language
We can benefit from HAL library functions to use the CAN module in C language
after setting its properties as explained in Sect. 8.5.3. Configuration of the CAN filter
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parameter can be made by the function HAL_CAN_ConfigFilter. This function
needs a pointer to the struct CAN_HandleTypeDef that contains the configuration
information for the specified CAN module. The reader should define and configure
this structure within code. We next provide detailed information on the configuration
function and filter structure.

struct CAN_FilterTypeDef{
uint32_t FilterIdHigh; // specifies the filter identification

number. MSBs for a 32-bit configuration , first one for a 16-
bit configuration.

uint32_t FilterIdLow; // specifies the filter identification
number. LSBs for a 32-bit configuration , second one for a 16-
bit configuration

uint32_t FilterMaskIdHigh; // specifies the filter mask number or
identification number, according to the mode. MSBs for a 32-

bit configuration , first one for a 16-bit configuration.
uint32_t FilterMaskIdLow; // specifies the filter mask number or

identification number, according to the mode. LSBs for a 32-
bit configuration , second one for a 16-bit configuration.

uint32_t FilterFIFOAssignment; // specifies the FIFO which will
be assigned to the filter and can be one of CAN_filter_FIFO0
or CAN_filter_FIFO1

uint32_t FilterBank; // specifies the filter bank which will be
initialized. For single CAN instance it can be 0-14, For dual
CAN instances it can be 0-27

uint32_t FilterMode; // specifies the filter mode to be
initialized and can be one of CAN_FILTERMODE_IDMASK or
CAN_FILTERMODE_IDLIST

uint32_t FilterScale; // specifies the filter scale and can be
one of CAN_FILTERSCALE_16BIT or CAN_FILTERSCALE_32BIT

uint32_t FilterActivation; // enable or disable the filter and
can be one of CAN_FILTER_DISABLE or CAN_FILTER_ENABLE

uint32_t SlaveStartFilterBank; // start index of filter bank for
the slave CAN instance for dual CAN instances

}

HAL_CAN_ConfigFilter (CAN_HandleTypeDef *hcan, CAN_FilterTypeDef
*sFilterConfig)

/*
hcan: pointer to the CAN_HandleTypeDef struct
sFilterConfig: pointer to the CAN_FilterTypeDef struct
*/

Before sending or receiving data, message headers to be sent or received
should be configured. The user should define and configure these headers using
the structures CAN_TxHeaderTypeDef and CAN_RxHeaderTypeDef within code.
Afterward, the CAN module can be started using the function HAL_CAN_Start.
Then, a message can be added to the first free Tx mailbox. Also, the corresponding
transmission request can be activated using the function HAL_CAN_AddTxMessage.
Similarly, a CAN message can be taken from the Rx FIFO zone into the message
RAM using the function HAL_CAN_GetRxMessage. If a transmission request
is pending at the selected Tx, mailboxes can be checked using the function
HAL_CAN_IsTxMessagePending. More information on these functions and struc-
tures are provided next.
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struct CAN_TxHeaderTypeDef{
uint32_t StdId; // specifies the standard identifier between 0

and 0x7FF
uint32_t ExtId; // specifies the extended identifier between 0

and 0x1FFFFFFF
uint32_t IDE; // specifies the type of identifier for the message

that will be transmitted and can be one of CAN_ID_STD or
CAN_ID_EXT

uint32_t RTR; // specifies the type of frame for the message that
will be transmitted and can be one of CAN_RTR_DATA or

CAN_RTR_REMOTE
uint32_t DLC; // specifies the length of the frame that will be

transmitted between 0-8
FunctionalState TransmitGlobalTime; // specifies whether the

timestamp counter value captured on start of frame
transmission and can be either ENABLE or DISABLE

}

struct CAN_RxHeaderTypeDef{
uint32_t StdId; // specifies the standard identifier between 0

and 0x7FF
uint32_t ExtId; // specifies the extended identifier between 0

and 0x1FFFFFFF
uint32_t IDE; // specifies the type of identifier for the message

that will be transmitted and can be one of CAN_ID_STD or
CAN_ID_EXT

uint32_t RTR; // specifies the type of frame for the message that
will be transmitted and can be one of CAN_RTR_DATA or

CAN_RTR_REMOTE
uint32_t DLC; // specifies the length of the frame that will be

transmitted between 0-8
uint32_t Timestamp; // specifies the timestamp counter value

captured on start of frame reception between 0 and 0xFFFF
uint32_t FilterMatchIndex; // specifies the index of matching

acceptance filter element between 0 - 0xFF
}

HAL_CAN_Start(CAN_HandleTypeDef *hcan)
/*
hcan: pointer to the CAN_HandleTypeDef struct
*/

HAL_CAN_AddTxMessage (CAN_HandleTypeDef *hcan,
CAN_TxHeaderTypeDef *pHeader, uint8_t aData, uint32_t *
pTxMailbox)

/*
pHeader: pointer to the CAN_TxHeaderTypeDef struct.
aData: array containing the payload of the Tx frame.
pTxMailbox: pointer to a variable where the function will return

the TxMailbox used to store the Tx message
*/

HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo,
CAN_RxHeaderTypeDef *pHeader, uint8_t aData)

/*
RxFifo: Fifo number of the received message to be read and can be

one of CAN_filter_FIFO0 or CAN_filter_FIFO1
pHeader: pointer to the CAN_RxHeaderTypeDef struct
aData: array where the payload of the Rx frame will be stored.
*/
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HAL_CAN_IsTxMessagePending (CAN_HandleTypeDef *hcan, uint32_t
TxMailboxes)

/*
TxMailboxes: list of Tx mailboxes to check, it can be any

combination of CAN_TX_MAILBOX0 , CAN_TX_MAILBOX1 and
CAN_TX_MAILBOX2.

*/

HAL library also covers CAN end of conversion interrupt generation.
Therefore, we should activate the interrupts using the function HAL_CAN_Activate
Notification. Then, we should use the callback function HAL_CAN_TxMailbox0
CompleteCallback, HAL_CAN_TxMailbox1CompleteCallback, or HAL_CAN_Tx
Mailbox2CompleteCallback. We can also use the functions HAL_CAN_RxFifo
0MsgPendingCallback and HAL_CAN_RxFifo1MsgPendingCallback for
pending message on receive FIFO interrupts. To note here, these functions
are generated in weak form (without any content) automatically in the
“STM32F4xx_hal_can.c” file when a project is created. This means when the
reader forgets defining the actual functions, the code still runs. When the user
defines his or her function, then these weak functions are ignored. We next provide
detail of these functions.

HAL_CAN_ActivateNotification (CAN_HandleTypeDef *hcan, uint32_t
ActiveITs)

/*
hcan: pointer to the CAN_HandleTypeDef struct
ActiveITs: indicates which interrupts will be enabled, it can be

any combination of CAN_Interrupts.
*/

HAL_CAN_TxMailbox0CompleteCallback (CAN_HandleTypeDef *hcan)
HAL_CAN_TxMailbox1CompleteCallback (CAN_HandleTypeDef *hcan)
HAL_CAN_TxMailbox2CompleteCallback (CAN_HandleTypeDef *hcan)
HAL_CAN_RxFifo0MsgPendingCallback (CAN_HandleTypeDef *hcan)
HAL_CAN_RxFifo1MsgPendingCallback (CAN_HandleTypeDef *hcan)

We next provide an example on the usage of the CAN module. The C code for this
example is given in Listing 8.19. It aims to familiarize the reader with the setup and
usage of the CAN module. Here, CAN1 module is configured in loopback mode.
Hence, the code block for message sending and receiving parts can be executed on
the same microcontroller. As a result, the code can be easily debugged. There is a
counter value in the code that will be transmitted and received every 2 s. If mod 3
of the received counter value is zero, then the green LED connected to pin PG13 of
the STM32F4 board is toggled. If mod 5 of the received counter value is zero, then
the red LED connected to pin PG14 of the STM32F4 board is toggled.

Listing 8.19 Usage of the CAN module, the C code

/* USER CODE BEGIN PV */
CAN_FilterTypeDef sFilterConfig;
CAN_TxHeaderTypeDef sTxHeader;
CAN_RxHeaderTypeDef sRxHeader;
uint32_t TxMailbox;

uint8_t canTxData[8] = {0};
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uint8_t canRxData[8];
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
sFilterConfig.FilterBank = 0;
sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
sFilterConfig.FilterIdHigh = 0x12 << 5;
sFilterConfig.FilterIdLow = 0x0000;
sFilterConfig.FilterMaskIdHigh = 0x0000;
sFilterConfig.FilterMaskIdLow = 0x0000;
sFilterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
sFilterConfig.FilterActivation = ENABLE;
sFilterConfig.SlaveStartFilterBank = 14;

HAL_CAN_ConfigFilter(&hcan1, &sFilterConfig);
HAL_CAN_Start(&hcan1);

sTxHeader.StdId = 0x12;
sTxHeader.RTR = CAN_RTR_DATA;
sTxHeader.IDE = CAN_ID_STD;
sTxHeader.DLC = 2;
sTxHeader.TransmitGlobalTime = DISABLE;
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
canTxData[0]++;

HAL_CAN_AddTxMessage(&hcan1, &sTxHeader, canTxData, &TxMailbox);
while (HAL_CAN_IsTxMessagePending(&hcan1, TxMailbox));
HAL_CAN_GetRxMessage(&hcan1, CAN_RX_FIFO0 , &sRxHeader , canRxData)

;

if ((canRxData[0] % 3) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);

if ((canRxData[0] % 5) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);

HAL_Delay(2000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

In order to execute the code in Listing 8.19, create an empty project; configure the
pins PA12 and PA11 as CAN1_TX and CAN1_RX, respectively. Then, enable the
CAN1 module and set the loopback mode. Set the “Prescaler (for Time Quantum)”
to 16, “Time Quanta in Bit Segment 1” to 4, and “Time Quanta in Bit Segment 2” to
2, and enable “Automatic Retransmission.” As the project is compiled and run, the
counter value will be transmitted and received and LEDs will toggle accordingly.

8.5.4.2 Usage via C++ Language
We can benefit from the available functions in Mbed to use the CAN module via
C++ language. Here, the CAN and CANMessage classes will be of help. Under
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these, the function frequency can be used to configure the speed of operation.
The function mode sets mode of the CAN module. The function filter can be
used to configure filter parameters of the CAN module. CANMessage creates a
CAN message. The functions write and read can be used to transmit and receive
CAN messages, respectively. The function attach can be used to attach a callback
function whenever a CAN transmit or receive interrupt is generated. We next provide
detail of these functions.

frequency(int hz)
/*
hz: the bus frequency in Hz
*/

mode (Mode mode)
/*
mode: the operation mode, it can be one of CAN::Normal, CAN::

Silent, CAN::LocalTest , CAN::GlobalTest or CAN::SilentTest
*/

filter (unsigned int id, unsigned int mask, CANFormat format=
CANAny, int handle=0)

/*
id: the id to filter on
mask: the mask applied to the id
format: format to filter on
handle: message filter handle
*/

CANMessage

write (CANMessage msg)
/*
msg: the CANMessage to write.
*/

read (CANMessage &msg, int handle=0)
/*
msg: the CANMessage to read to.
handle: message filter handle (0 for any message)
*/

attach (Callback < void()> func, IrqType type=RxIrq)
/*
func: pointer to a void function , or 0 to set as none
type: CAN interrupt to attach the member function
*/

CANMessage(unsigned int _id, const unsigned char *_data,
unsigned char _len=8, CANType _type=CANData, CANFormat
_format=CANStandard)

/*
_id: Message ID
_data: Message Data
_len: Message Data length
_type: Type of Data, can be one of CANData or CANRemote
_format: Data Format, can be one of CANStandard , CANExtended or

CANAny
*/
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We next repeat the example given in the previous section now in C++ language.
We provide the corresponding code in Listing 8.20. Copy and paste the code to
the “main.cpp” file in the active project under Mbed Studio and run it. This code
performs the same operations as its C version.

Listing 8.20 Usage of the CAN module, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 2000
#define filterHandle 0

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

CAN can(PA_11, PA_12);

uint8_t canTxData = 0;

int main()
{
CANMessage canRxData;
CANMessage TxMsg(0x12, &canTxData , 1, CANData, CANStandard);

can.mode(CAN::LocalTest);
can.filter(0x12, 0xFF, CANStandard , filterHandle);

while (true)
{
if (can.write(TxMsg))
{
canTxData++;
}

if (can.read(canRxData , filterHandle))
{
if ((canRxData.data[0] % 3) == 0)
greenLED = !greenLED;
if ((canRxData.data[0] % 5) == 0)
redLED = !redLED;
}
thread_sleep_for(WAIT_TIME_MS);
}
}

8.5.4.3 Usage via MicroPython
In order to use the CAN module in MicroPython, CAN filters must be configured
first using the function setfilter(bank, mode, fifo, params). Here, bank
is the number of the filter coefficients which will be used. The mode is used to select
the filter mode. It can be set as CAN.LIST16 for selecting four different 16 bit IDs,
CAN.LIST32 for selecting two different 32 bit IDs, CAN.MASK16 for selecting two
sets of 16 bit ID/mask pairs, or CAN.MASK32 for selecting one set of 32 bit ID/mask
pair. The fifo is the number of the FIFO buffers used by the filter and can be
selected as 0 or 1. Finally, the params is the array which holds the values selected
according to the filter mode.
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As the filter is configured, the function send(data, id, timeout) can be
used to send a message to the CAN bus. Here, data is the data which will be
sent. It can be an integer or buffer (byte) object. id is the id of the data which will
be sent. timeout is the timeout value in milliseconds. The function recv(fifo,
timeout) can be used to receive a message from the CAN bus. Here, fifo is the
FIFO number which will be used. timeout is the timeout value in milliseconds
and is set to 5000 by default. This function returns a four-element tuple as follows.
The ID of the message is the first element. The RTR flag is the second element.
The filter match index value is the third element. Finally, the array containing the
received message is the fourth element.

Let’s provide an example on the usage of CAN module via MicroPython. In this
example, we will use the loopback property of the CAN module. Hence, we can
observe the CAN module without any external hardware modification. There is a
counter value in the code that will be transmitted and received every 2 s. If mod 3
of the received counter value is zero, then the green LED connected to pin PG13
of the STM32F4 board is toggled. If mod 5 of the received counter value is zero,
then the red LED connected to pin PG14 of the STM32F4 board is toggled. The
MicroPython code for this example is given in Listing 8.21.

Listing 8.21 Usage of the CAN module, the MicroPython code

import pyb
from struct import unpack

def main():
TxMsg = 0
greenLED = pyb.Pin(’PG13’, mode=pyb.Pin.OUT_PP)
redLED = pyb.Pin(’PG14’, mode=pyb.Pin.OUT_PP)
can = pyb.CAN(1)
can.init(pyb.CAN.LOOPBACK , baudrate=100000)
can.setfilter(0, pyb.CAN.LIST16, 0, (10, 11, 12, 13))
while True:

can.send(TxMsg, 12)
TxMsg += 1
RxMsg = can.recv(0)
print(RxMsg[3])
data = unpack(’<B’, RxMsg[3])[0]
if data % 3 == 0:

greenLED.value(not greenLED.value())
if data % 5 == 0:

redLED.value(not redLED.value())
pyb.delay(2000)

main()

8.6 Universal Serial Bus

The fifth digital communication type we will be using is the universal serial bus
(USB). We will next focus on its working principles. Then, we will consider the
setup and usage of the USB module specific to the STM32F4 microcontroller.
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8.6.1 USBWorking Principles

USB is a standard aiming to connect the PC, cell phones, tablets, and peripheral
devices such as mouse, keyboard, and webcam. Besides, USB also sets the standards
for the cable, connector, voltage level, signal type, and protocols used in operation.
USB has three major versions as USB1.x, USB2.x, and USB3.x. Each major version
also has its subversions. For more information on them, please see [11].

We can explain working principles of the USB (and its line structure) based on
the definitions in Sect. 8.1. Data in USB is represented in layers. The highest layer
is the frame. There are transactions within a frame. These consist of packets. Each
packet is composed of fields. We will explain working principles of the USB based
on this layered structure in the following paragraphs.

In USB communication, one side should be master and the other slave. However,
the naming for these in USB terminology is host and peripheral (device), respec-
tively. Moreover, there is a device called hub in USB. This is used to increase the
number of connected peripheral devices. Via hub, a total of 127 peripheral devices
can be connected to a USB line. However, there can only be one host in operation.

A device need not to be a peripheral all the time in USB. There is a specific
property developed for it called USB on the go (OTG). A good example for this
operation is the cell phone. If the cell phone is connected to a PC, the PC acts as
host and cell phone acts as peripheral. If a USB memory is connected to the cell
phone, then the cell phone changes its mode and acts as host, and USB memory acts
as peripheral. This is achieved since the cell phone supports the USB OTG standard.
As a note, not all USB devices support the USB OTG property.

Data transfer speeds in USB are set by standards and these cannot be changed.
Besides, there are modes in USB versions (specific to USB 2.x and USB 1.x)
as low speed (LS), full speed (FS), and high speed (HS). Based on these, data
transfer speeds in terms of bit rates are tabulated in Table 8.1. Since the STM32F4
microcontroller supports the USB2.0 version, we will just focus on it.

Output voltage from the microcontroller (such as STM32F4) may not be
compatible with the standard USB line voltage levels. Hence, there should be a
transceiver (specifically called PHY) connected to the microcontroller. In other
words, the transceiver converts signals at the microcontroller output to actual USB
line voltage levels. As a side note, the STM32F4 microcontroller has an embedded
PHY within itself.

USB uses a differential line with line names D+ and D−. The STM32F4 micro-
controller reference manuals use the DP and DM naming for these, respectively.
Data encoding used in operation is NRZI. Besides encoding, D+ and D− line

Table 8.1 USB2.x and
USB1.x bit rates

Mode Acronym Bit rate (Mbits/s) USB version

Low speed LS 1.5 USB 1.0

Full speed FS 12 USB 1.1

High speed HS 480 USB 2.0
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Fig. 8.26 USB frame

voltage values are used to define states. For more information on these, please see
[4, 11]. The USB line works in half duplex mode.

We can explain working principles of USB based on its layered structure as in
Fig. 8.26. USB frame is started at every millisecond in USB LS and FS. In USB HS,
this timing becomes 125 μs. A peripheral device (such as mouse) cannot send data
by itself. Instead, it can send data as a response to a frame started by the host.

As can be seen in Fig. 8.26, each frame consists of one start of frame (SOF)
token and more than one transaction. Each transaction is composed of three packets
as token, data, and handshake. The data packet is optional. Each packet is composed
of different fields as SYNC, PID, ADDR, ENDP, PAYLOAD, CRC, and EOP. The
SYNC field is 8 and 32 bits for USB LS and USB HS, respectively. This field is
responsible for clock synchronization between the host and peripheral devices. The
PID stands for packet ID. This field is 8 bits and defines type of the packet. ADDR
is the 7-bit address field. Through it, the receiver is set if the hub option is used in
communication. ENDP is the 4-bit endpoint address. There are virtual endpoints in
each peripheral device defining the function of the USB device. PAYLOAD is the
transmitted data which can be between 0 and 1023 bytes. Token packets have 5 bit
CRC. Data packets have 16 bit CRC. EOP represents the end of packet.

Now, let’s focus on packets. Token packets are available in every transaction.
They are always sent by the host. This is the first packet transmitted in transaction.
The aim of this packet is to start the transaction, address the device and endpoint,
and define what will be sent or received in the transaction. There are four tokens
as IN, OUT, SETUP, and SOF. Data packets keep the transferred data. Handshake
must be the last packet in transaction. Please see [4] for more information on how a
data or handshake packet is formed.
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Fig. 8.27 USB connection diagram between the host and peripheral

We next provide the general USB connection diagram between a host and
peripheral device in Fig. 8.27. As can be seen in this figure, the USB line is
composed of two data lines and one VBUS line. Data lines can be used in both
differential and single-ended form.

The host and peripheral blocks are composed of one USB core (controller) and
USB PHY. The latter is used to adjust voltage level between the USB core and
USB line. Each peripheral has at most 16 endpoints (16 in, 16 out). Endpoints
can be grouped within themselves. These groups are called transfers. There can
be control, interrupt, isochronous, and bulk transfer. The control transfer is used to
understand the peripheral device type and configure it. This is done at the beginning
of operation. The interrupt transfer is used to send or receive data for peripheral
devices such as mouse and keyboard. In these, data has high priority but low size.
As a side note, this is not an actual interrupt operation. The isochronous transfer is
used for audio and video data. Bulk transfer is used in devices such as USB memory
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Fig. 8.28 Block diagram of USB modules in the STM32F4 microcontroller. (a) USB FS. (b) USB
HS

and printers. In these, data size is large. Besides, there are descriptors in USB. We
will not consider them in this book.

8.6.2 USBModules in the STM32F4Microcontroller

The STM32F4 microcontroller has two USB modules. One of them is the USB
FS and the other is USB HS. Both modules are compatible with the USB 2.0
standard. They also support the USB OTG property. As a reminder, USB FS
supports transmission speed of 12 Mbits/s. USB HS supports transmission speed
of 480 Mbits/s. Moreover, both modules support low-speed (LS) 1.5 Mbits/s
transmission. PHY is also available in the STM32F4 microcontroller.

The USB FS and USB HS modules have their own FIFO RAMs. These are used
to receive and transmit data. The USB FS module FIFO RAM has size of 1.25 kB.
The USB HS module FIFO RAM has size of 4 kB. Each FIFO RAM can hold
multiple packets.

We provide block diagram of the USB FS and USB HS modules of the STM32F4
microcontroller in Fig. 8.28. In this figure, DP and DM pins are for data transfer.
VBUS is for 5 V power supply. ID pin is used to check whether the device is host
or peripheral in the OTG operation. PHY converts the USB line electrical signal
to standard logic levels and transfers them to the USB core module. As all frame
operations are done in the USB core module, data is transferred to the related FIFO
RAM. USB FS and USB HS modules work at 48 MHz clock speed. The USB HS
module also supports external PHY support besides the internal PHY.

The USB FS and USB HS modules in the STM32F4 microcontroller have two
modes as host and peripheral. In the host mode, 5 V voltage should be powered to
the connected peripheral device. This is called VBUS. The host is responsible for
this operation done by the external charge pump circuit. In the host mode, USB FS
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Fig. 8.29 USB configuration
in STM32CubeMX

and HS support 8 and 12 connection channels. This means eight different functions
can be supported or data can be received or sent in USB FS module. The number
of functions becomes 12 in the USB HS module. In the peripheral mode, USB FS
module supports one bidirectional (three in, three out) endpoint. This means the
module can support one microphone, one headphone, and their control keys at the
same time. USB HS module supports one bidirectional (five in, five out) endpoint.

8.6.3 USB Setup in the STM32F4Microcontroller

We will consider USB setup in this section. Therefore, we will start with the C
language based setup. This will be followed by MicroPython based setup operations.

8.6.3.1 Setup via C Language
We will benefit from STM32CubeMX to setup the USB HS and USB FS module
properties in C language. At this stage, we assume that a project has already been
created under STM32CubeIDE as given in Sect. 3.1.3. In order to setup USB via
STM32CubeMX, first open the “Device Configuration Tool” window by clicking
the “.ioc” file in the project explorer window. Then, configuration can be done in
this section as shown in Fig. 8.29. We will provide details of this operation next.

In order to use the USB HS or USB FS module, DM and DP pins should be con-
figured first. To do so, click on the GPIO pin with USB capability of the STM32F4
microcontroller in the STM32CubeMX interface. Afterward, select the GPIO
type as “USB_OTG_FS_DM,” “USB_OTG_FS_DP,” “USB_OTG_HS_DM,” or
“USB_OTG_HS_DP,” in the “Device Configuration Tool” window as in Fig. 8.29.

Once the DP and DM pins are selected, click the appropriate option
(“USB_OTG_FS” or “USB_OTG_HS”) under the “Connectivity” section from
the left STM32CubeMX menu. Then, mode configuration can be done in this
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Fig. 8.30 USB mode menu
in STM32CubeMX

Fig. 8.31 USB configuration
menu in STM32CubeMX

section as shown in Fig. 8.30. Here, select the mode as “Device only.” The other
modes can be “Host only” or “OTG.” We will not consider these modes in this
chapter. To note here, USB_OTG_FS uses internal PHY and USB_OTG_HS can
use internal or external PHY. Hence, we will only use the internal PHY in this
chapter.

After configuring the USB module in device mode, its parameters can be set from
the opened “Parameter Settings” tab in the “Configuration” menu as in Fig. 8.31. At
this stage, we will use the default settings which will be sufficient for us.

We should also set the clock properties for the USB to work. To do so, the
“48MHz clocks” clock output should be active. This clock is fed by the main PLL.
Hence, the HSE oscillator should also be activated. To do so, select the “Crystal/Ce-
ramic Resonator” as high-speed oscillator (HSE) under the STM32CubeMX RCC
window. Afterward, the main PLL input should be selected as HSE in the clock
configuration window. Related to all these settings, we should also set the PCLK to
168 MHz.

To use the USB module, we can benefit from ST USB middleware [8]. There-
fore, click on to “USB_DEVICE” under the “Middleware” section from the left
STM32CubeMX menu. Then, mode configuration of USB middleware can be done
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Fig. 8.32 USB middleware mode menu in STM32CubeMX

Fig. 8.33 USB middleware
configuration menu in
STM32CubeMX

in this section as shown in Fig. 8.32. Here, select “Human Interface Device Class
(HID).” The other modes can be “Audio Device Class,” “Communication Device
Class,” “Download Firmware Device Class,” “Custom Human Interface Device
Class,” or “Mass Storage Class.” We will not use these modes in this chapter.

After configuring the USB middleware in “Human Interface Device Class
(HID),” its settings can be configured from the opened “Parameter Settings” tab
in the “Configuration” menu as in Fig. 8.33. At this stage, we will use the default
settings which will be sufficient for us.

8.6.3.2 Setup via MicroPython
MicroPython has the USB_HID class to use the USB human interface device
property. Before using the USB_HID module in the code, go to the “boot.py”
file and uncomment the line pyb.usb_mode(’VCP+HID’). Then, the USB_HID
module can be created and initialized using the function pyb.USB_HID().



282 8 Digital Communication

8.6.4 USB Usage in the STM32F4Microcontroller

As the USB module is set up in the previous section, we will focus on its usage
next. Therefore, we will benefit from C and MicroPython languages. To note here,
we will use high-level functions in these languages.

8.6.4.1 Usage via C Language
We can use the USB middleware library functions to configure the USB module
in C language after setting its properties in STM32CubeMX as introduced in
the previous section. Here, we will only focus on the human interface device
(HID) class operation. There is only one function for USB HID operation as
USBD_HID_SendReport. This function can be used to send HID data to host using
USB. Also, we will use structures to define what the USB HID device is. Here, the
struct mouseHID_t is used to define the USB mouse features. The button press or
mouse movement will be implemented using this structure.

struct mouseHID_t {
uint8_t buttons; // bit2: middle button, bit1: right button,

bit0: left button
int8_t x; // cursor movement in x axis, relative to last position
int8_t y; // cursor movement in y axis, relative to last position
int8_t wheel; // vertical movement , relative to last position
};

USBD_HID_SendReport(USBD_HandleTypeDef *pdev, uint8_t *report,
uint16_t len)

/*
pdev: pointer to the USBD_HandleTypeDef struct
report: pointer to report
len: length of report elements to be sent
*/

We next provide examples on the usage of USB module via C language. The first
example, with the code given in Listing 8.22, aims to familiarize the reader with the
setup and usage of the USB module. Here, the USB HS module will be configured
as USB device. To do so, the USB_Device middleware will be used to implement
a USB mouse. The onboard button connected to pin PA0 will be configured in
interrupt mode. It will trigger the transmission when pressed. Also, digital value
of this button will be sent to host PC as left mouse button click. Hence, the user can
use the onboard button as the left mouse button.

Listing 8.22 Usage of the USB module, first example, the C code

/* USER CODE BEGIN Includes */
#include "usbd_hid.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
// HID Mouse
struct mouseHID_t
{
uint8_t buttons;
int8_t x;
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int8_t y;
int8_t wheel;
};
struct mouseHID_t mouseHID = {0, 0, 0, 0};

extern USBD_HandleTypeDef hUsbDeviceHS;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET)
mouseHID.buttons = 1;
else
mouseHID.buttons = 0;
USBD_HID_SendReport(&hUsbDeviceHS , (uint8_t *)&mouseHID , (

uint16_t)sizeof(struct mouseHID_t));
__NOP();
}
}
/* USER CODE END 0 */

In order to run the code in Listing 8.22, create an empty project; configure the
pins PB14 and PB15 as USB_OTG_HS_DM and USB_OTG_HS_DP, respectively.
Set the internal USB FS PHY of USB_OTG_HS as “Device Only.” Then, set the
“Human Interface Device Class (HID)” of class for USB HS of USB_DEVICE
middleware. Enable the crystal/ceramic resonator for HSE and set 48 MHz clock
output. Configure the PA0 pin in external interrupt mode with falling/rising trigger
detection. As the project is compiled and run, the onboard button can be used as left
mouse button. The user can test the code by moving the mouse over a file on the PC
desktop and then pressing the onboard button.

The second example, with the C code given in Listing 8.23, repeats the first
example given in Listing 8.22. Here, mouse movements will be implemented in
addition to the mouse button press action. Replace the code given in Listing 8.22
with the one in Listing 8.23. As the project is compiled and run, the onboard button
can be used as left mouse button. The user will notice that the mouse will move 20
pixels in horizontal and vertical directions every second.

Listing 8.23 Usage of the USB module, second example, the C code

/* USER CODE BEGIN Includes */
#include "usbd_hid.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
// HID Mouse
struct mouseHID_t
{
uint8_t buttons;
int8_t x;
int8_t y;
int8_t wheel;
};
struct mouseHID_t mouseHID = {0, 0, 0, 0};
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extern USBD_HandleTypeDef hUsbDeviceHS;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{
if (GPIO_Pin == GPIO_PIN_0)
{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET)
mouseHID.buttons = 1;
else
mouseHID.buttons = 0;
USBD_HID_SendReport(&hUsbDeviceHS , (uint8_t *)&mouseHID , (

uint16_t)sizeof(struct mouseHID_t));
__NOP();
}
}
/* USER CODE END 0 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
mouseHID.x = 20;
mouseHID.y = 20;
USBD_HID_SendReport(&hUsbDeviceHS , (uint8_t *)&mouseHID , (

uint16_t)sizeof(struct mouseHID_t));
HAL_Delay(1000);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

8.6.4.2 Usage via MicroPython
In MicroPython, the function send(data) can be used to send data over USB
HID interface. Here, data represents the data which will be sent over USB HID
interface. It can be a tuple/list of integers or a byte array. The function recv(data,
timeout) can be used to receive data over the USB HID interface. Here, data can
be set as number of data bytes which will be received, or a byte array in which
received bytes will be saved. The timeout is the timeout value in milliseconds and
is set to 5000 by default.

Let’s provide an example on the usage of USB HID module via MicroPython. In
this example, the onboard button is used as a mouse left click. Pressing and releasing
the mouse left button is controlled with a flag inside the associated callback function.
The MicroPython code for this example is given in Listing 8.24.
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Listing 8.24 Usage of the USB module, the MicroPython code

import pyb
flag = 0
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)

def get_button(id):
global flag
if userButton.value() == 1:

flag = 1
else:

flag = 2

def main():
hid = pyb.USB_HID()
userButtonInt = pyb.ExtInt(’PA0’, pyb.ExtInt.

IRQ_RISING_FALLING , pyb.Pin.PULL_DOWN, get_button)
while True:

if flag == 1:
# (button status, x-direction, y-direction , scroll)
hid.send((1, 0, 0, 0))

elif flag == 2:
# (button status, x-direction, y-direction , scroll)
hid.send((0, 0, 0, 0))

main()

8.7 Other Digital Communication Types

There are other important but less frequently used digital communication types
available on the STM32F4 microcontroller. We will provide brief information on
them in this section.

8.7.1 SD Bus Interface

SD bus is used to communicate with the SD card or other devices attached to the
SD card slot. SD bus interface is the communication type used for this purpose.
Secure digital input and output (SDIO) is the peripheral unit in the STM32F4
microcontroller performing SD bus interface operations.

Recently SD cards have been used in embedded systems. All SD card systems
support both SPI and SD bus interface. The connected device decides on which one
to use. We explored SPI communication in Sect. 8.3. Here, we will only focus on SD
bus interface. SD bus interface allows communicating with SD card families MMC,
RS-MMC, MMCplus, MMCmobile, SecureMMC, SD, miniSD, and microSD. It
also allows communicating with a camera or microphone having an SD card socket
with extended specifications [1].

We can explain working principles of the SD bus interface based on the
definitions in Sect. 8.1 as follows. Data types and encoding options are similar to
SPI. Hence, NRZ is used in operation. Voltage level used in operation is 3.3 V. Some
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Table 8.2 SD bus interface
communication speeds

Max bit Max transfer rate (Mbits/s)

Card type Clock (MHz) 1-bit wide 4-bit wide 8-bit wide

MMC 20 20 – –

RS-MMC 20 20 – –

MMCplus 52 52 208 832

MMCmobile 52 52 208 832

SecureMMC 20 20 – –

SD 208 208 832 –

MiniSD 208 208 832 –

MicroSD 208 208 832 –

SDIO 50 50 200 –

cards can switch to 1.8 V after start-up. This is done to save power. SD bus interface
can use one cable for serial communication. It can also communicate in parallel
form with four or eight cables. Based on these, the communication is called 1-bit,
4-bit, or 8-bit wide. Normally, all SD cards support 1-bit-wide communication. If
there is extra support for 4- or 8-bit-wide communication, then the SD card can
switch to these modes.

SD bus interface has two different pin groups as command and data. The
master device sends commands, such as read/write, via one (command) pin to
the slave device. There are one, four, and eight pins for 1-, 4-, and 8-bit-wide
data communication, respectively. The master device only sends data to be read
or written to. Therefore, command and data pins work in half duplex mode. SD bus
interface supports master and slave communication. However, they are called host
and card, respectively. Communication speed in SD bus interface depends on the
used SD card and number of data cables. We tabulated them in Table 8.2. As can be
seen in this table, the maximum transfer rate can be 832 Mbits/s.

Frames in SD bus interface are constructed in two different forms. The first one
handles the commands sent through its pin. The second one is the data sent through
data pin or pins. The host device sends the command frame with 48 bits. Fields
forming this frame are start bit, transmission bit, command index, argument, CRC,
and end bit. The start bit is always set to logic level 0. Likewise, the transmission
bit is always set to logic level 1. The command index is composed of 6 bits
keeping commands. Argument is composed of 32 bits keeping the argument. CRC is
composed of 7 bits. The end bit is always set to logic level 1. The SD card responds
to a command with frames having different structures. The simplest one is the same
as host frame. For more information on this topic, please see [1].

The host device sends the data frame in a structure as follows. Fields in the
frame are start bit, data, CRC, and end. The start bit always has logic level 0 value.
Data size is fixed to 512 bytes for some commands. For others, its size can change.
However, the maximum size cannot exceed 512 bytes. CRC is composed of 16 bits.
The end bit has always logic level 1 value.
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Fig. 8.34 SD bus connection
diagram

The connection diagram for the SD bus is as in Fig. 8.34. As can be seen in this
figure, there is one clock line called CLK. The clock is provided by the host device.
There are also one command (CMD) pin and n+1 data pins. Here, n can be 7, 3, or
0 based on the communication type. The host also supports power to the card.

Data transfer in the SD bus interface can be summarized as follows. The host
first sends the command to the SD card such as read, write, or erase. The SD
card responds to this. When the 1-bit-wide data line is used, data is transferred
synchronously with the clock as in SPI communication. When 4-bit-wide data line
is used, there are two methods. In the first method, most significant 4 bits of 1 byte
data are sent in the first clock pulse; the remaining least significant 4 bits of data are
sent in the second clock pulse. Hence, 1 byte of data is transferred after two clock
pulses. In the second method, each cable works independently. Hence, 4 bytes of
data is taken. Most significant (seventh) bits of all 4 bytes are sent from four cables
separately at the first clock pulse. The next sixth bits of all 4 bytes are sent from
four cables separately at the second clock pulse. This operation repeats till the least
significant (zeroth) bits of the 4 bytes are sent. As a summary, 4 bytes of data is
transmitted after eight clock pulses. The same method applies to 8-bit-wide data
line. The only difference will be the number of used parallel lines, which is eight in
this case. Hence, 8 bytes of data is transmitted after eight clock pulses.

The STM32F4 microcontroller has one SDIO module. Through it, we can use SD
cards supporting protocols MultiMediaCard system specification version 4.2, SD
memory card specifications version 2.0, SD I/O card specification version 2.0, and
CE-ATA digital protocol Rev1.1. The STM32F4 microcontroller supports 48 MHz
clock speed for these operations. The module also supports 1-, 4-, and 8-bit-wide
data transfer.

8.7.2 Inter-IC Sound

Inter-IC sound (I2S) is extensively used for audio data transfer between ADC/DAC,
codec integrated circuits (IC), and the microcontroller or DSP chips. It has been
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introduced by Philips Semiconductors in 1986. Then, it is revised in 1996. The
original documentation for I2S can be found in [6].

We can explain working principles of I2S based on the definitions in Sect. 8.1. We
should first mention that this protocol is derived from SPI. Hence, they have several
common properties. The difference of I2S from SPI is that, in the former, the clock
signal is always active. I2S uses NRZ for data encoding. I2S can work in full duplex
or simplex mode. However, it is used in simplex mode most of the times. In I2S,
there is master slave setup. Here, the module generating the clock signal is called
master. The other IC becomes slave. Besides, there is also transmitter, receiver, and
controller. The module transmitting data is called transmitter. The module receiving
data is called the receiver. The controller decides on who will transmit data and who
will receive it. This module need not to be available all the times. Based on these,
there may be different combinations such as master transmitter, master receiver, or
master controller.

There is no maximum bit rate value for operation. However, the bit rate is most
of the times related to the sampling frequency of audio signals which is 44.1, 48, 96,
or 192 kHz. The bit length for these operations can be 16, 24, or 32 bits for mono
audio signals. For stereo audio signals, these values are doubled. Based on these,
the stereo data will have clock speed of 2 × 48000 × 64 = 6.144 MHz if the used
sampling frequency is 48 kHz and the bit length is 64 bits.

Data in I2S is sampled at rising edge of the clock. There is also an accompanying
word select (WS) signal which selects the stereo channel to be transmitted.
According to the initial standards, the left channel (channel 1) of the stereo signal
is transmitted when WS has logic level 0 value. The right channel (channel 2) of
the stereo signal is transmitted when WS has logic level 1 value. The WS signal can
have period of 32 or 64 clock pulses. Besides, there is no start, stop, ACK, or other
values in the frame. Only data is transmitted.

We provide general connection diagram for three different I2S scenarios in
Fig. 8.35. As can be seen in this figure, there are four pins in each module as MCK,
CLK, WS, and SD. These stand for master clock, clock, word select, and serial data
respectively. The master device generates the MCK for the slave to work and clock
signal for data to be transmitted. All slave devices may not need a MCK signal.
Besides, the transmitter module generates the SD and WS signals and sends them
to the receiver.

The STM32F4 microcontroller has two I2S modules as I2S2 and I2S3. These
are multiplexed by SPI modules. We refer the reader to our book on digital signal
processing on the usage of these modules in a similar microcontroller [10].

8.8 Application: Digital Communication for the Robot Vacuum
Cleaner

We add remote control ability to our robot vacuum cleaner in this chapter. Therefore,
we first use a stand-alone board as remote controller with Bluetooth connection.
As the second option, we develop a remote controller application to run on
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Fig. 8.35 I2S connection diagram for three different settings. (a) Master transmitter. (b) Master
receiver. (c) Master controller

Android mobile phones. We provided the equipment list, circuit diagram, detailed
explanation of design specifications, and peripheral unit settings in a separate
document in the folder "Chapter8\EoC_applications" of the accompanying
supplementary material. In the same folder, we also provided the complete C, C++,
and MicroPython codes for the application.

8.9 Summary of the Chapter

Embedded systems have evolved such that Internet of things (IoT) has become
one of the hot topics in today’s world. Digital communication is the backbone of
IoT. Hence, we considered several modules to perform digital communication in
embedded systems. To be more specific, we introduced UART, SPI, I2C, CAN,
USB, SDIO, and I2S modules available in the STM32F4 microcontroller. Although
we introduced them for the STM32F4 microcontroller, we first explained the general
definitions in digital communication. Then, we introduced each communication
type starting from a general perspective. Then, we provided its setup and usage
for the STM32F4 microcontroller. While doing so, we benefit from the C, C++,
and MicroPython languages. Hence, the reader can observe how a digital commu-
nication module works in real life. Related to this, we expanded our previously
introduced real-world example by adding digital communication property to it as
the end of chapter application. To sum up, one of the building blocks of IoT is digital
communication. The concepts introduced in this chapter offer valuable information
to understand it. Therefore, the reader should master them to get familiar with IoT.
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Problems

8.1. Form a project with the following specifications. There are two STM32F4
boards at hand. We will use the button on the first board to toggle the green LED on
the second board. Use, UART, SPI, and I2C modules to transfer the toggle command
from one board to other. The STM32F4 microcontroller on both boards should be
in low power mode when not used. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

8.2. Expand the setup in Problem 8.1 as follows. As the second board receives the
toggle command, it turns back an acknowledge bit to the first board. Hence, the
green LED on it turns on.

8.3. Form a project with the following specifications. There are two STM32F4
boards at hand. We will use the ADC module on the first board to measure tem-
perature on the STM32F4 microcontroller. This measured value will be transferred
to the second board. If the temperature value is greater than a predefined threshold,
the red LED on the second board will turn on. Otherwise, the green LED on the
second board will turn on. Use UART, SPI, I2C, and CAN modules to transfer the
ADC value from one board to other. The STM32F4 microcontroller on both boards
should be in low power mode when not used. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
(c) MicroPython.

8.4. Expand the setup in Problem 8.3 as follows. As the second board receives the
ADC value, it turns back an acknowledge bit to the first board. Hence, the green
LED on it turns on.
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9Memory Operations

9.1 MemoryWorking Principles

This section introduces how memory works in Arm® microcontrollers, including
STM32F4. Therefore, we will first explain the bus architecture. Then, we will focus
on RAM working principles. Finally, we will explore the flash memory and its
structure.

9.1.1 Bus Architecture

As briefly introduced in Chap. 2, bus is composed of parallel wires in which data and
instructions are transferred between microcontroller units. Arm® microcontrollers
use advanced microcontroller bus architecture (AMBA) for this purpose. AMBA
controls all data transfer between microcontroller units. Here, the unit which
initiates data transfer is called master. The unit which responds to master is called
slave.

There are two different bus structures in AMBA. These are called advanced
high-performance bus (AHB) and advanced peripheral bus (APB). AHB supports
high-speed and high bandwidth operations. Therefore, it is generally used by
CPU, DMA modules, and external and internal memory units. AHB supports
pipelined operations and burst transfer. Burst transfer is used to realize multiple
data transactions at once. This is especially useful for communicating with slave
units with high initial access latency. APB supports low bandwidth operations. This
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Fig. 9.1 The STM32F4 bus matrix connections [3]

leads to low power consumption. Communication between most peripheral units is
performed via this interface.

The STM32F4 microcontroller has a multilayer bus matrix as in Fig. 9.1. This
bus matrix allows connecting several master and slave units. To be more specific,
the STM32F4 microcontroller has 10 master and 8 slave units.

As can be seen in Fig. 9.1, there are three bus types connecting to the bus matrix
as instruction bus (I-bus), data bus (D-bus), and system bus (S-bus). The instruction
bus is used by the CPU to fetch instructions from flash memory, SRAM, or external
memory (wherever the code is running from). The prefetch operation in the adaptive
real-time accelerator, to be introduced in Sect. 9.1.4, is also performed via the
instruction bus. The CPU controls code or data in memory locations by the data
bus. The system bus allows the CPU to reach peripheral units or SRAM. Besides,
DMA buses connect the related DMA master devices to desired peripheral unit and
memory blocks. Hence, DMA can be used for providing high-speed data transfer
between peripheral units to memory, memory to peripheral units, and memory to
memory without the CPU intervention. We will evaluate these operations in detail
in Sect. 9.4.
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9.1.2 Memory in General

The memory in the STM32F4 microcontroller is based on Harvard architecture [3].
Hence, data and instructions are transferred through their own dedicated data and
instruction bus. The number of possible memory locations is determined by the
address bus size. There are 2k addressable memory locations for k address bits.
AHB and APB of the STM32F4 microcontroller have 32 bit address bus. Hence,
there are a total of 4 GByte possible usable address locations. The partitioning of
these address locations is given in Sect. 2.1.2. Besides, each address location can
keep 1 byte data as will be explained next. Hence, the maximum data size that can
be stored in memory is 4 GByte.

Memory is composed of data storage blocks. Each block has its own address
value and content. As the name implies, address of a memory block indicates
its unique location in memory. The content is the value stored in that address.
The minimum memory block size for the STM32F4 microcontroller is 1 byte. In
other words, the minimum addressable memory block can have size of 1 byte.
Hence, these memory blocks are called byte-addressable. For RAM, the addressable
memory size can be 1 byte, 2 bytes (half-word), and 4 bytes (word). For the flash
memory, the addressable memory size can be 1 byte, 2 bytes (half-word), and 4 bytes
(word) for the writing operation. We can also have 8 byte (double word) addressable
memory size in flash memory for reading operation. Since the minimum addressable
memory location is 1 byte, half-word and word data are stored in the memory in little
endian format [3].

9.1.3 RAM

SRAM of the STM32F4 microcontroller is divided into different blocks as tabulated
in Table 9.1. In this table, CCM stands for core coupled memory. Backup SRAM
can be used as internal EEPROM in standby mode. Read and write operations to
SRAM are performed at any clock speed without delay.

As can be seen in Table 9.1, SRAM1, SRAM2, and SRAM3 form a total of
192 kB SRAM used by global and static variables, heap, and stack. We will talk
about global and static variables in Sect. 9.2.4 in detail.

Heap is a specific RAM region in which dynamic memory allocation can be
performed. We will explain how to use heap in C and C++ languages in detail in

Table 9.1 SRAM blocks and their properties

Name Size (kB) Start address Accessed by

SRAM1 112 0x20000000 All AHB master units

SRAM2 16 0x2001C000 All AHB master units except D-bus and I-bus

SRAM3 64 0x20020000 All AHB master units except D-bus and I-bus

CCM data RAM 64 0x10000000 D-bus

Backup SRAM 4 0x40024000 All AHB master units
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Sect. 9.2. Heap allocation and usage is automatically done in MicroPython. The
user can check heap usage by the command mem_info there.

Stack is the specific memory region initially located at the end of usable SRAM.
Here local variables and temporary data are stored during code execution. We will
talk about local variables in Sect. 9.2.4 in detail. Data is moved to and removed
from stack in last-in first-out (LIFO) order. This means last data moved to stack
is removed first. Stack memory allocation and deallocation is done automatically
in C and C++ languages. However, stack should be used carefully to prevent stack
overflow. This overflow occurs when variables added to the stack exceed its free
area during code execution. For such cases, either existing variables or critical code
segments in nearby RAM regions are overwritten. This may cause serious problems.
As in heap, stack allocation and usage is automatically done in MicroPython. The
user can check stack usage by the command mem_info there.

9.1.4 FlashMemory

The STM32F4 microcontroller has 2 MB flash memory divided into two banks, each
having 1 MB space. Each bank is further divided into 12 sectors. Hence, sectors
from 0 to 11 are in bank 1 and sectors from 12 to 23 are in bank 2. For each bank,
first four sectors are 16 kB, fifth sector is 64 kB, and remaining sectors are 128 kB.
Starting address of flash memory (beginning of sector 0) is 0x08000000 and end
address (end of sector 23) is 0x081FFFFF. Flash memory erasing operation can be
done at sector level, bank level, or whole (mass flash erase).

The CPU has higher clock speed compared to flash memory. Therefore, when
CPU performs an operation connected to flash memory, it should wait for the end
of operation. This is called wait state. To be more specific, when reading data
or code from flash memory, there is a relation between HCLK frequency, supply
voltage level, and number of flash wait states. If the supply voltage is kept constant,
then the wait state increases with respect to the HCLK frequency. As an example,
when the HCLK frequency is in the range 0–30 MHz, the wait state will be zero
clock cycle. When the HCLK frequency is in the range 150–180 MHz, the wait
state becomes five clock cycles. Hence, increasing the clock speed does not directly
increase performance. To overcome this problem, the STM32F4 microcontroller has
the adaptive real-time (ART) accelerator unit. Normally, 128-bit read operations can
be performed sequentially and flash is stalled during number of wait states between
each read. The ART accelerator uses an instruction prefetch queue and branch cache.
Hence, latency between successive reads may be prevented. As a result, 0 wait state
code execution from flash memory may be achieved at CPU clock frequencies up to
180 MHz.

The STM32F4 microcontroller also has other memory regions besides its 2 MB
flash memory. These are tabulated in Table 9.2. In this table, OTP stands for one-
time programmable. System memory region is used to boot the device in system
memory boot mode. As the name implies, OTP bytes can be programmed only once
and cannot be rewritten again. Option bytes region is used to configure read and
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Table 9.2 Other flash
memory regions

Name Size (bytes) Start address

System memory 32,768 0x1FFF0000

OTP bytes 528 0x1FFF7800

Option bytes, bank 1 16 0x1FFFC000

Option bytes, bank 2 16 0x1FFEC000

write protection, brown-out reset (BOR) level, watchdog module, and dual bank
boot mode. When the device is in standby or stop mode, it can also be used to adjust
the reset operation.

Some microcontrollers have memory protection unit (MPU) which adds secure
access to SRAM and flash memory blocks. Unfortunately, the STM32F4 micro-
controller does not have such a unit. Still, memory read/write protection can be
performed by option bytes. There are three protection levels as read protection
(RDP), write protection, and proprietary code readout protection (PCROP).

RDP protects the selected flash memory block against copying and checking via
debugging tools. There are three levels (as 0, 1, and 2) for this purpose. The default
mode is level 0. There is no protection here. When level 1 is activated, the user
cannot perform read, write, or erase operations on flash memory or backup SRAM
via any debug interface. If level 1 is disabled and level 0 is activated afterward, mass
erase operation can be done on flash memory. Hence, it can be reprogrammed. Level
2 acts like level 1. However, all option bytes are frozen and cannot be changed when
level 2 is activated. Hence, this is a nonreversible operation. The reader should use
this option with caution. The reader should apply power-on reset while the debugger
is active to activate a level change. RDP can be set by bits 15 to 8 of 2 bytes starting
from the memory address 0x1FFFC000. Writing 0xAA to this region activates level
0. Writing 0xCC to this region activates level 2. Writing any other value to this region
activates level 1.

Write protection adds protection to write or erase operations to each flash sector
separately. PCROP works in a similar manner with additional protection for the end
user code and debugger-based read operation. The main difference of PCROP is
that it does not allow a different protection method for the overall flash. In other
words, if PCROP is selected for a flash sector, other sectors can only be protected
by it if needed. Write protection or PCROP can be selected by the 15th bit of the 2
bytes starting from the memory address 0x1FFFC008. By default, this bit is reset.
Hence, write protection has been selected. If this bit is set, PCROP is selected. Bits
0–11 of the 2 bytes can be used to enable or disable the selected protection (write
protection or PCROP) for flash bank 1 sectors 0–11. If the 15th bit is reset (write
protection is selected), resetting a bit among bits 0–11 activates write protection
for the corresponding sector. Let’s assume that we reset bit 15 and bit 6 and set
the remaining bits. This way, we apply write protection to sector 6 of flash bank
1. No protection is applied to other sectors. If the 15th bit is set, we should also
set the bit among bits 0–11 to activate PCROP for the corresponding sector. Let’s
assume that we set bit 15 and bit 6 and reset the remaining bits. This way, we apply
PCROP to sector 6 of flash bank 1. No protection is applied to other sectors. The
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same operations can be done to flash bank 2 sectors 12–23 by modifying the bits
11–0 of the 2 bytes starting from the memory address 0x1FFEC008.

9.2 MemoryManagement in C and C++ Languages

We will consider memory management in C and C++ languages in this section.
Since both languages share common properties, we handle them together. We will
start memory management with RAM and flash memory modification. Then, we
will focus on pointers and their usage for memory management. Afterward, we will
handle local and global variables in C and C++ languages.

9.2.1 RAM Partitioning

We can modify RAM usage, more specifically heap and stack memory, after
opening a new project under STM32CubeIDE. To do so, we should open the linker
script file “STM32F429ZITX_FLASH.ld” located at the top level of the project
folder. In this file, the highest address of the user mode stack (end of SRAM)
is defined by the code line _estack = ORIGIN(RAM) + LENGTH(RAM). Stack is
used in decreasing order starting from this address. Code lines _Min_Heap_Size
and _Min_Stack_Size are used to define the minimum heap and stack size,
respectively.

The user can allocate memory from heap using the function malloc() or
calloc() within RAM. Allocated memory can be freed using the function free()
during code execution. Memory management of the heap must be controlled by the
user. If unused allocated memory is not freed, heap will eventually fill and memory
leakage will occur. Another problem encountered when using heap is fragmentation.
Memory blocks in heap are allocated and freed not in the same order. As a result,
the required memory space in heap can be available in fragmented form. Therefore,
it may not be used.

Global and static variables are placed in SRAM starting from the memory address
0x20000000. Heap is placed after this placement. As a reminder, stack is placed at
the end of SRAM region. The user should make sure that the memory space used in
all these regions should not exceed the total SRAM size in the microcontroller.

9.2.2 MemoryModification

A code block can be placed to a desired memory region using the attribute
property of STM32CubeIDE. To do so, we should open the linker script file
“STM32F429ZITX_FLASH.ld” located at the top level of the project folder. There,
we can modify the existing memory declaration
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MEMORY
{

CCMRAM (xrw) : ORIGIN = 0x10000000 , LENGTH = 64K
RAM (xrw) : ORIGIN = 0x20000000 , LENGTH = 192K
FLASH (rx) : ORIGIN = 0x8000000 , LENGTH = 2048K

}

as follows to specify a new memory region.

MEMORY
{

CCMRAM (xrw) : ORIGIN = 0x10000000 , LENGTH = 64K
RAM (xrw) : ORIGIN = 0x20000000 , LENGTH = 192K
FLASH (rx) : ORIGIN = 0x8000000 , LENGTH = 1024K
FLASH_CODE (rx) : ORIGIN = 0x8100000 , LENGTH = 1024K

}

Then, we should place the code given below between “.data” and “.bss” sections.
Hence, all sections named as “.flash_code*” in the code will be placed in the
constructed FLASH_CODE memory region.

.flash_code :
{
*(.flash_code*);
} > FLASH_CODE

There are two main reasons to place a code to a specific memory location. The
first one is related to MPU of a microcontroller. As a reminder, this unit ensures
that the code written to a specific memory region cannot be reached by another
program. Unfortunately, the STM32F4 microcontroller does not have MPU. The
second reason for placing a code to a specific memory location is speeding up its
operation. This is done by placing the code to a designated place in RAM. As a side
note, this code block will be retained from flash memory after every reset operation.

We next provide a usage example for placing a code segment to specific memory
location. To do so, we form the function called sum in our C code. Then, we place
it to the memory location defined as FLASH_CODE. We use the sum function to add
2–3 as follows.

/* USER CODE BEGIN 0 */
__attribute__((section(".flash_code"))) int sum(int a, int b)
{
return a+b;

}

/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
int c;
c = sum(2,3);
/* USER CODE END 2 */

As the code is executed, we can see that the variable c will have value 5 as
expected. Moreover, if we visit the address 0x8100000 in the “Memory” window,
we can see that our sum function has been placed in the FLASH_CODE memory
region.
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9.2.3 Pointer-Based Operations

Pointers and pointer arithmetic allow reaching and modifying a specific memory
address in C and C++ languages. This is one of the most powerful and possibly
confusing properties of C language. Since we are using pointers in the STM32F4
microcontroller, we can grasp the basic idea behind them more easily as we can
observe the memory map of the microcontroller via STM32CubeIDE. This will be
of great help in understanding the usage of pointers and pointer arithmetic. Next, we
provide several usage areas of pointers in C language. We can revisit pointer-based
operations in C++ language in Mbed Studio as well. Since C and C++ languages
handle the pointer in a similar manner, we provide the modified codes for C++
language as supplementary material in the accompanying book web site.

9.2.3.1 Pointer to a Variable
We provide a pointer definition and usage in Listing 9.1. In this code, we define an
integer variable a and assign value 3 to it. In fact, when we make such a definition
and assignment, the variable is kept in a specific memory address. In order to reach
this memory address, we define a pointer aPointer with integer type. This pointer
can keep memory address of the variable a by the code line aPointer=&a. For
our case, this memory address is 0x20000000 as can be seen in the “Expressions”
window in Fig. 9.2 after the code is executed in STM32CubeIDE. We can indirectly
reach and modify this memory address content by the code line *aPointer=5.
Hence, the a value is modified as can be seen in Fig. 9.2.

Listing 9.1 Pointer to a variable example, the C code

int a = 3;
int *aPointer;

int main(void)
{
aPointer = &a;
*aPointer = 5;

while (1);
}

Fig. 9.2 “Expressions”
window for the pointer usage
example
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Fig. 9.3 “Expressions”
window for the pointer to
pointer usage example

9.2.3.2 Pointer to a Pointer
The pointer is itself another variable kept in memory. We can reach this memory
address by using pointer to a pointer. This method is also called double pointer in
literature. To note here, this is an advanced and powerful operation. We only use it
for reaching the pointer address in this book.

We provide the pointer to a pointer (double pointer) usage in Listing 9.2. In
this code, we extend our previous example in Listing 9.1 such that we define
the pointer to a pointer by the code line int **pPointer and equate it to the
address of aPointer by the code line pPointer = &aPointer. As we run the
code in STM32CubeIDE, we can observe that the aPointer is kept in the memory
address 0x20000024 as can be seen in the “Expressions” window in Fig. 9.3. In
Listing 9.2, we modify the value of our variable a by the pointer to pointer usage as
**pPointer=7.

Listing 9.2 Pointer to pointer usage example, the C code

int a = 3;
int *aPointer;
int **pPointer;

int main(void)
{
aPointer = &a;

pPointer = &aPointer;

*aPointer = 5;

**pPointer = 7;

while (1);
}

9.2.3.3 Reaching a Specific Memory Address by Pointers
Pointers can be used to reach a specific memory address in the STM32F4 microcon-
troller. We provide two methods for this purpose in this section. The first method is
based on pointer arithmetic and casting operation. We provide such an example
in Listing 9.3. In this code, we modify the memory addresses 0x20000020 and
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Fig. 9.4 Memory map after
modifying the memory
content

0x20000024 via pointer arithmetic and casting operation. We provide the memory
map after this operation in Fig. 9.4. As can be seen in this figure, the memory content
has been modified as expected.

Listing 9.3 Reaching a specific memory address using pointer arithmetic and casting operation,
the C code

unsigned int *memLoc;

int main()
{
memLoc = (unsigned int *)0x20000020;

*(memLoc) = 0x01234567;
*(memLoc + 1) = 0x89ABCDEF;

while (1);
}

The second method in reaching a memory address is using the define statement.
We provide such an example in Listing 9.4. Here, we modify the memory addresses
0x20000020 and 0x20000024 via define statement. The memory map after this
operation will again be as in Fig. 9.4.

Listing 9.4 Reaching a specific memory address using the define statement, the C code

#define memLoc1 (*(unsigned long *)0x20000020)
#define memLoc2 (*(unsigned long *)0x20000024)

int main(void)
{

memLoc1=0x1234567;
memLoc2=0x89ABCDEF;

while (1);
}

The second method allows obtaining the unique identification number (ID) of the
STM324 microcontroller. As a side note, each STM microcontroller has its unique
ID composed of 96 bits assigned to it. We provide the sample code for this operation
in Listing 9.5. The obtained unique ID for our microcontroller can be observed both
in the “Expressions” window and “Memory map” as in Fig. 9.5.
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Fig. 9.5 Obtaining unique ID of the STM32F4 microcontroller. (a) Expressions window. (b)
Memory map

Listing 9.5 Obtaining unique ID of the STM32F4 microcontroller, the C code

#define ID1 (*(unsigned long *)0x1FFF7A10)
#define ID2 (*(unsigned long *)0x1FFF7A14)
#define ID3 (*(unsigned long *)0x1FFF7A18)

int main(void)
{

while (1);
}

9.2.3.4 Pointers and Arrays
When an array is defined in C language, it is in fact treated as pointer. We provide
one such example in Listing 9.6. In this code, we first define an integer array, a,
with entries {1, 2, 3, 4, 5}. We then assign the array to the pointer with the code
line aPointer=a. We next reach the second element of the array and modify it by
the code line *aPointer = 0. We can observe the effect of this operation in the
“Expressions” window in Fig. 9.6. This window also provides another insight on
the array usage. As can be seen there, the array a is kept by its starting address only.
Hence, we can use it as a pointer.

Listing 9.6 Array usage as pointer example, the C code

int a[5] = {1, 2, 3, 4, 5};
int *aPointer;

int main(void)
{

aPointer = a;
aPointer += 1;
*aPointer = 0;

while (1);
}
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Fig. 9.6 “Expressions”
window for the array as
pointer example

Fig. 9.7 “Expressions”
window for the structure
example

9.2.3.5 Pointer to a Structure
Structure (struct) is a powerful tool in representing data in grouped form. We will
be using structures in digital image processing operations. We can use pointers in
reaching a specific field in a structure.

We provide an example on structure usage in Listing 9.7. Here, we define an
image struct, ImageTypeDef, with five fields as *pdata, width, height, size, and
format. Then, we create an image struct as img1 and assign values to its elements.
We also provide how a pointer is used to reach specific field elements in the structure
in the same example. We provide the “Expressions” window in Fig. 9.7 as we run
the code in STM32CubeIDE.

Listing 9.7 Structures and pointer usage on them, the C code

#include <stdint.h>

struct ImageTypeDef
{
uint8_t *pData;
uint16_t width;
uint16_t height;
uint32_t size;
uint8_t format;
};
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int main(void)
{

struct ImageTypeDef img1;
uint8_t img1Arr[64];

img1.pData = img1Arr;
img1.width = 8;
img1.height = 8;
img1.size = 64;
img1.format = 4;
img1.pData[5] = 8;

while (1);
}

9.2.3.6 Function Call by Reference
Pointers allow passing array addresses directly to a function. This is function call by
reference which allows modifying a specific array element in the function. Here, we
do not transfer all array elements to the function and receive them back afterward.
This becomes extremely important while processing long arrays such as images or
audio signals.

We provide two examples on the usage of function call by reference next. In
the first example, given in Listing 9.8, the function replace is used to replace the
second element of any array with value 0. Here, only starting address of the array is
passed to the function instead of passing all its elements.

Listing 9.8 The first function call by reference example, the C code

#include <stdint.h>

char a[5] = {1, 2, 3, 4, 5};
char *aPointer;

void replace(char *pointer);

int main()
{

aPointer = a;
replace(aPointer);

while (1);
}

void replace(char *pointer)
{
pointer += 1;
*pointer = 0;
}

In the second example, given in Listing 9.9, the function squareFunc is used
to take square of the array elements. Here, only the starting address and size of the
array are fed to the function instead of passing all array elements. Size of the array
is fed to the function since it must know the number of array elements to operate on.
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Listing 9.9 The second function call by reference example, the C code

char a[5] = {1, 2, 3, 4, 5};
char *aPointer;

void squareFunc(char *pointer, int size);

int main()
{
aPointer = a;
squareFunc(aPointer , sizeof(a));

while (1);
}

void squareFunc(char *pointer, int size)
{
int i;

for (i = 0; i < size; i++)
{
*(pointer + i) *= *(pointer + i);
}
}

9.2.3.7 Function Pointers
Pointers can also be used to call functions. This is different from previous
applications such that we call a code script to be executed by an assigned pointer
to it. There are two main reasons for the usage of such a method. The first usage
area is when a callback function is associated with its interrupt source in Mbed. A
simple example for this usage is the code line button.rise(&toggle()). Here,
toggle()) is the callback function associated with the button rise interrupt. We
have seen such examples starting from Chap. 5. The second usage area is forming a
function which can perform the same operation on different variable types.

We provide a function pointer usage example in Listing 9.10. This code consists
of a function to modify array elements as desired. We feed start address of the array,
size of the array, size of each array element, and the function (dummy) to perform
the desired change as a pointer. The (dummy) function is called and operated on
the given data. However, we do not know what this (dummy) function is until it is
called. In our example, we set this (dummy) function as the one taking square of the
array elements.

Listing 9.10 Function pointer usage example, the C code

/* USER CODE BEGIN PV */
float arr[5] = {1.7, 2.8, 3.6, 4.5, 5.2};
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void change(void *arr, size_t arrSize, size_t elemSize , void (*

dummy)(const void *))
{
char *ptr = (char *)arr;
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int i;
for (i = 0; i < arrSize; i++)
{
dummy(ptr + i * elemSize);
}
}

void squareFunc(const void *x)
{
*(float *)x = (*(float *)x) * (*(float *)x);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
change(arr, 5, sizeof(float), squareFunc);
/* USER CODE END 2 */

9.2.4 Local, Global, and Static Variables

We can define a variable either as local or global in C and C++ languages. As the
name implies, a global variable is available to all code blocks. However, a local
variable is only available to the function it is defined in. These two variables are kept
in different memory locations in RAM. Global variables are kept starting from the
lowest possible memory address (0x20000000) in SRAM. As a new global variable
is added, the memory address is incremented and the new variable is saved there.
On the other hand, local variables are kept in the highest memory address in the
stack. For STM32F4 microcontroller, this address is initially 0x2002FFFF which
is the end of SRAM. Based on the definition of stack, when a new local variable
comes, it is saved to the recent memory address. The address value is decremented
afterward. Hence, local variables are saved from top to bottom in SRAM in stack. It
is important to note that the C and C++ languages take main() as a function. Hence,
a variable defined within the main function is also treated as local. Therefore, a
global variable should be defined before the main() declaration.

We should also explain how a static variable works in C and C++ languages.
Such a variable is created with the static keyword and kept in RAM during code
execution. Even if a static variable is declared as local, it is not kept in stack. Instead,
the static variable is placed at the beginning of RAM as with global variables. The
importance of the static variable is as follows. It can be defined in a function. Hence,
it will be local to that function. However, whenever the function is called more than
once, the value of the static variable is not lost unlike other local variables.

We can observe how global and local variables are stored in memory by the help
of pointer usage. We provide one simple example in C language in Listing 9.11.
Here, the variable a is defined as global and the variable b is defined as local. We
provide the “Expressions” window after executing the code in Fig. 9.8. As can be
seen in this window, the two variables are kept in different memory locations. We
can observe this effect by pointer usage.
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Fig. 9.8 “Expressions”
window for the local and
global variables example

Listing 9.11 Local and global variables, the C code

//Global variable
int a = 1;
int *aPointer;

int main(void)
{
//Local variable
int b = 2;
int *bPointer;

aPointer = &a;
bPointer = &b;

while (1);
}

We can observe the local and global variable handling in C++ language under
Mbed Studio. Since C and C++ languages handle local and global variables in a
similar manner, we provide the modified codes for C++ language as supplementary
material in the accompanying book web site.

9.3 MemoryManagement in MicroPython

As explained before, MicroPython is an efficient implementation of Python lan-
guage which can be used in microcontrollers with limited memory space. Therefore,
memory management is one of the biggest problems encountered while using
MicroPython. We provide how memory management can be done in MicroPython
in this section. Besides, we introduce local and global variables in MicroPython.

9.3.1 RAMManagement During Compilation Stage

MicroPython firmware is placed in flash memory of the microcontroller. However,
importing additional Python scripts uses RAM during compilation and execution
steps. During compilation, a Python script is converted to bytecode and stored in
RAM until compilation is done. This means importing multiple modules may cause
memory fault even before the execution process. There are two methods to prevent
this.
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9.3.1.1 Frozen Bytecode Usage
The first method in avoiding memory fault is using frozen bytecode. In this method,
modules to be used in the code are compiled with MicroPython. Hence, they become
part of the MicroPython firmware to be embedded in the microcontroller flash
memory. We will explain how to use the frozen bytecode method in Chap. 15.

9.3.1.2 Precompiling Scripts
The second method in avoiding memory fault is precompiling Python scripts to
bytecodes separately and creating individual “.mpy” files. Then, these files can be
embedded in the microcontroller flash memory. We will explain how to use the
precompiling scripts method in Chap. 15.

9.3.2 Effective RAMUsage During Code Execution

After compiling the MicroPython code and execution of the bytecode starts, RAM
must be used. Since RAM space is limited, we must focus on effective (or minimal)
RAM usage at this step. MicroPython offers several methods to perform this
operation. We provide some of these methods next.

9.3.2.1 Constant Usage
The first method in decreasing RAM usage can be done by the const() function.
This function works in a similar manner as with the define statement in C
language. Before explaining how the const() function works, let’s focus on how
a variable is handled in MicroPython. When a variable is defined in MicroPython,
both the variable and the necessary bytecode for it are stored in RAM. When the
const() function is used, only value of the variable is stored in RAM. It is directly
used during code execution. Hence, we should keep fixed variables in the code by
the const() function. This way, the compiler uses value of the constant directly
and saves bytecode which means less RAM space. We provide an example for the
const() function in Listing 9.12.

Listing 9.12 The const() function usage in MicroPython

from micropython import const
SIZE = const(10)
_SIZE = const(10)

x = SIZE
y = _SIZE

In Listing 9.12, we declare the SIZE as constant in two different ways. First, the
SIZE constant does not use space in bytecode. However, since it is defined as global,
it still uses RAM space. This way, SIZE can be used in other modules as well. When
a constant is used with underscore before it, it means this constant is only available
for the current module. This is the second usage as _SIZE in our MicroPython script.
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Here, this constant does not use RAM space. However, it is limited to the module it
is defined in.

9.3.2.2 Constant Data Structures
The second method in decreasing RAM usage can be done by constant data
structures. If there is constant data which does not change during code execution,
it can be located in a Python module as bytes object and frozen as bytecode.
Hence, the compiler does not copy these objects to RAM since they are constant
(immutable) variables. This process can be applied in other immutable object types
such as string, float, or integer. Only tuple object type cannot be used in
this way, although it is an immutable object. For more information on mutable and
immutable objects, please see [1].

9.3.2.3 Using Pre-allocated Buffers
The third method in decreasing RAM usage is by pre-allocated buffers. When
obtaining data from a microcontroller peripheral unit (such as UART, I2C, SPI, or
USB), a new buffer is created every time data is obtained. However, this may cause
a fragmentation problem in RAM. Instead, a pre-allocated buffer can be used such
that the same buffer is used every time the peripheral unit is used. We have provided
a usage example for this setup in Listing 8.13.

9.3.2.4 Garbage Collector
The fourth method in decreasing RAM usage is associated with the garbage
collector. As explained in Sect. 9.1.3, heap is used to allocate dynamic memory.
Therefore, when an object is created in MicroPython, necessary RAM space is
allocated for it from heap. When the object is no longer needed, it is called garbage.
The garbage collector recognizes this object and puts the allocated memory space
back to the heap.

Garbage collector runs automatically under two conditions. The first one is the
failed allocation attempt. When an allocation attempt is failed, garbage collector
runs and allocation process is retried. The second condition is by a RAM threshold.
If free heap memory is less than a predefined threshold, garbage collector runs
automatically.

Garbage collector can also be triggered manually using the function
gc.collect(). Heap fragmentation can be reduced by using this function at
periodic time intervals instead of automatic garbage collection. This manual garbage
collection process is important for real-time applications for the following reason.
Automatic garbage collection may take several milliseconds. On the other hand, this
duration can be divided into smaller time durations using a periodic manual garbage
collector. Besides, if we wait for the garbage collector to work automatically, the
heap memory may be fragmented more during this time. This negatively affects the
heap usage.

Garbage collector can be enabled or disabled using the functions gc.enable()
and gc.disable(), respectively. Related to this, the function gc.threshold
([threshold_value]) can be used to define the heap allocation threshold
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described before. There are also two functions to monitor free and allocated heap
space as gc.mem_free() and gc.mem_alloc(), respectively. Finally, the function
mem_info() can be used to monitor the overall heap condition.

9.3.3 Local and Global Variables

MicroPython also has local and global variables. By default, any variable declaration
will lead to a local variable. The reader can use the keyword global to declare
a variable to be global. We provide one such usage example for these cases in
Listing 9.13. In this code, the variable x is declared as global within two functions
and used as such. The variable y is declared as local. Hence, when asked to print its
value outside its scope, it will generate an error.

Listing 9.13 Local and global variable usage in MicroPython

x = 3

def multiply():
global x
x = x * 2
y = 1
print("y is equal to ", y)

def add():
global x
x = x + 2

print("x is equal to ", x)
multiply()
print("x is equal to ", x)
add()
print("x is equal to ", x)
print("y is equal to ", y)

9.4 Direct Memory Access

For some applications, large amount of data may be received from a peripheral unit,
sent to a peripheral unit or copied from one memory location to another. If the CPU
is dedicated for these operations, it cannot perform other tasks at the same time.
Hence, code execution efficiency reduces. Therefore, most microcontrollers have
direct memory access (DMA) controllers for such memory operations to keep CPU
free for other tasks. We will explore the DMA controller available in the STM32F4
microcontroller in this section.
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Fig. 9.9 Block diagram of the DMA controller

9.4.1 The DMA Controller in the STM32F4Microcontroller

The STM32F4 microcontroller has two independent DMA controllers (DMA1 and
DMA2) to transfer data efficiently from a peripheral unit to memory, memory to a
peripheral unit, or memory to memory. These DMA controllers handle data transfer
independent of the CPU. Hence, the CPU can execute other tasks or be kept in low
power mode.

Block diagram of the DMA controller in the STM32F4 microcontroller is as
in Fig. 9.9. As can be seen in this figure, the DMA controller has eight different
streams (stream 0 to stream 7). Stream is a DMA block which can be modified
independently. Hence, a different transfer type, buffer type, or other DMA properties
can be set for each stream separately.

All of the eight streams in the DMA controller can be used at once. Selection
between streams is handled by the arbiter according to stream priorities. There
are four different software stream priorities as very high, high, medium, and low.
If two streams have the same software priority, then hardware priorities are used.
Here, stream 0 has the highest hardware priority. Stream 7 has the lowest hardware
priority. Each stream has eight different channels (channel 0 to channel 7). A
channel decides on which DMA source will be connected to the stream. The channel
to be used is decided beforehand and more than one channel cannot be used for a
stream. We provide the complete list for each channel in Tables 9.3 and 9.4 for
DMA1 and DMA2, respectively.
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9.4.2 DMA Features

DMA can be used in direct or FIFO mode. Data transfer is initiated by each DMA
request in direct mode. Transfer width can be selected as byte, half-word, or word
and must be the same for source and destination. Data is first saved in a 16 byte FIFO
buffer in FIFO mode. Data is transferred after it reaches the selected threshold level
which can be as 1/4, 1/2, 3/4, or full. Let’s assume that we set the threshold level as
1/4. This means that data transfer occurs when data size reaches 16/4 bytes in the
FIFO buffer. Here, 4 bytes are transferred at once. In FIFO mode, data transfer width
for source and destination can be selected differently. This becomes advantageous
for applications such as DCMI module usage as explored in Chap. 14. Here, the
source (digital camera) sends data in byte format. The destination (DCMI module)
requires the data to be in half-word format. The FIFO mode handles this conversion
automatically.

DMA can also be used in normal or circular mode. The operation ends as the
required number of DMA transfers are done in the normal mode. If needed, it can be
restarted again. In the circular mode, the DMA operation restarts automatically from
the first address as the required number of DMA transfers is done. This becomes
very advantageous in applications performing the same operation repetitively such
as digital signal processing. There is also a double buffer mode available in circular
mode. In this mode, DMA controller swaps between two buffers automatically after
each data transfer. There is also an address increment option which can be used to
automatically increase address of source or destination separately.

Size of data to be transferred can be set by the DMA controller or peripheral
unit. If the DMA controller is used, then size of data that will be transferred can be
selected between 1 and 65,535 (as the total number of data transfer). As an example,
if data width is selected as byte, then maximum size of data becomes 65,535 bytes.
If size of data that will be transferred is unknown, the peripheral unit is responsible
for finishing the transfer. There is also a burst option used to send group of data
at once. Burst transfer size can be selected as 4, 8, or 16. To note here, the burst
transfer size is not the size of data that will be transferred. It indicates the data size
to be transferred at once. As an example, if data width is selected as byte and burst
size is selected as 4, then 4 byte data is transferred at once.

9.4.3 DMA Interrupts

The DMA controller can generate up to five different interrupt requests for each
stream. These are half-transfer reached, transfer complete, transfer error, FIFO error,
and direct mode error. Half-transfer reached and transfer complete interrupts are
used for tracking the DMA transfer. The transfer error, FIFO error, and direct mode
error interrupts are used for error management. Transfer error interrupt is generated
if a bus error occurs during DMA read/write access. Transfer error interrupt is
generated if the FIFO buffer overrun/underrun condition is detected or burst size
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Fig. 9.10 DMA mode and
configuration window

Fig. 9.11 DMA mode and configuration window after source selection

is larger than the FIFO buffer level. Direct mode error interrupt is generated if a
new DMA request occurs before existing data is transferred.

9.4.4 DMA Setup in the STM32F4Microcontroller

We will setup the DMA only in C language in this section. In order to configure the
DMA under STM32CubeMX, go to the “System Core” dropdown menu in “Pinout
& Configuration” window, and select the desired DMA. Opening “DMA Mode and
Configuration” window will be as in Fig. 9.10. In order to add a DMA source there,
select DMA1 or DMA2, click “Add” button, and select the desired source from the
opened “Select” dropdown list. Here, Tables 9.3 and 9.4 will be of help. In order
to add the DMA source, it must be enabled beforehand as explained in previous
chapters.

After the DMA source is selected, the “DMA Mode and Configuration” window
will be changed as in Fig. 9.11. If there is more than one DMA channel for the
selected source, it can be selected from the “Stream” dropdown list. Transfer
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direction can be selected from the “Direction” dropdown list. Priority for the DMA
channel can be selected from the “Priority” dropdown list. DMA mode can be
selected as “Normal” or “Circular” from the “Mode” dropdown list. In order to
use FIFO, “Use FIFO checkbox” must be checked. Then transfer threshold size can
be from the “Threshold” dropdown list. If FIFO mode is selected, burst transfer size
can also be selected from the “Burst Size” dropdown lists. Auto address increment
property for peripheral or memory can be enabled or disabled by selecting or
deselecting related checkboxes. Data width can be selected as byte, half-word, or
word for peripheral and memory from the related “Data Width” dropdown lists.
As the DMA is activated for the desired source, related DMA interrupt is enabled
automatically.

DMA can also be configured from the “Configuration” section of the peripheral
unit. There is a “DMA Settings” window for this purpose which is identical to the
“DMA Mode and Configuration” window. Same configuration steps can be applied
in this window as well.

“MemToMem” selection from the “DMA Mode and Configuration” window is
used for DMA transfer from memory to memory. It can be seen that there is only one
DMA source as MEMTOMEM after the “Add” button is clicked. However, “DMA
Stream” can be selected from “DMA2 Stream0” to “DMA2 Stream6” from the
“Stream” dropdown list. Memory to memory transfer direction, normal mode, and
FIFO usage are preset. However, all other configurations can be selected as desired.
The DMA interrupt is not enabled automatically for this transfer type. Hence, the
user should go to the “System Core” dropdown menu and enable DMA interrupt
from the NVIC window.

9.4.5 DMAUsage in the STM32F4Microcontroller

As DMA properties are set, the next step is its usage. We provide usage examples in
C language for this purpose in this section. To do so, we assume that a project has
already been created in STM32CubeIDE. After setting the desired DMA properties
in STM32CubeMX, related DMA initialization code is created under the function
MX_DMA_Init. This function is called automatically in the “main.c” file. Then, the
desired peripheral unit with DMA can be used with functions special to that unit.
We provide three such examples for ADC and UART modules as follows.

HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData,
uint32_t Length)

/*
hadc: pointer to the ADC_HandleTypeDef struct.
pData: pointer to array which ADC conversion results will be

saved by DMA controller.
Length: size of the array.
*/
HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData,

uint16_t Size)
/*
huart: pointer to the UART_HandleTypeDef struct.
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pData: pointer to array which holds the data transmitted by DMA
controller.

Size: size of the array.
*/

HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size)

/*
huart: pointer to the UART_HandleTypeDef struct.
pData: pointer to array which received data will be saved by DMA

controller.
Size: size of the array.
*/

There are also DMA callback functions specific to peripheral units. Some of these
functions are as follows. The function ADC_DMAError is used to handle the ADC
DMA error. The function UART_DMATxHalfCplt is used for tracking half of UART
DMA transmission. The function UART_DMAReceiveCplt is used for tracking end
of UART DMA receive operation. More information on these functions are given
next.

ADC_DMAError(DMA_HandleTypeDef *hdma)
/*
hdma: pointer to the DMA_HandleTypeDef struct.
*/
UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)

UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)

There are also additional functions for the memory to memory mode as fol-
lows. The functions HAL_DMA_Start and HAL_DMA_Start_IT are used to start
DMA without and with interrupt, respectively. The functions HAL_DMA_Abort and
HAL_DMA_Abort_IT are used to abort them, respectively. Finally, the function
HAL_DMA_RegisterCallback is used for assigning user functions as DMA inter-
rupt callback functions. More information on these functions are given next.

HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress ,
uint32_t DstAddress , uint32_t DataLength)

/*
hdma: pointer to the DMA_HandleTypeDef struct.
SrcAddress: source memory buffer address
DstAddress: destination memory buffer address
DataLength: DMA transfer size
*/

HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress ,
uint32_t DstAddress , uint32_t DataLength)

HAL_DMA_Abort(DMA_HandleTypeDef *hdma)

HAL_DMA_Abort_IT(DMA_HandleTypeDef *hdma)

HAL_DMA_RegisterCallback(DMA_HandleTypeDef *hdma,
HAL_DMA_CallbackIDTypeDef CallbackID , void (* pCallback)(
DMA_HandleTypeDef *_hdma))

/*
CallbackID: Identifier to select callback type. It can be

HAL_DMA_XFER_CPLT_CB_ID for transfer complete ,



9.4 Direct Memory Access 319

HAL_DMA_XFER_HALFCPLT_CB_ID for half transfer complete ,
HAL_DMA_XFER_ERROR_CB_ID for error and
HAL_DMA_XFER_ABORT_CB_ID for abort process.

pCallback: pointer to user callback function with pointer to a
DMA_HandleTypeDef struct as input.

*/

Let’s provide examples on the usage of DMA via C language. Our first example
is on memory to peripheral unit transfer using UART module. Every second, “Hello
World” string will be transmitted to PC via UART using DMA. The green LED,
connected to pin PG13 of the STM32F4 board, will be toggled every time to track
data transfer. We will use interrupt of the Timer 1 module to obtain 1 s intervals.
In order to configure this module, please see the examples given in Chap. 6. We
should also configure the USART1 module in “Asynchronous Mode” with baud rate
115,200 bits/s, data length as 8 bits, 1 stop bit, and no parity. The DMA is configured
from the “DMA2” window as “Normal” mode with no FIFO, byte data width for
both peripheral and memory, and auto increment for memory. The stream should be
selected as “DMA2 Stream 7 automatically.” Priority of the DMA is left as “Low”
since there is no additional DMA stream used in the code. DMA 2 module stream
0 global interrupt is enabled automatically. However, the USART1 interrupt must
be enabled from the “NVIC Settings” window. We provide the C code for our first
example in Listing 9.14. Please place the given code parts to appropriate places in
the “main.c” file.

Listing 9.14 UART data transfer using the DMA module

/* USER CODE BEGIN PV */
uint8_t arr[13] = "Hello World\n\r";
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
HAL_UART_Transmit_DMA(&huart1, arr, 13);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
if (__HAL_TIM_GET_FLAG(&htim1, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim1, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim1);
/* USER CODE END 2 */

The second example is on peripheral unit to memory transfer using the ADC
module. Here, consecutive 16 ADC conversion operations are done by the help of
DMA. Then, average of the obtained samples is calculated as voltage. If the average
voltage level is higher than 2.5 V, the green LED connected to pin PG13 of the
STM32F4 board is turned on. It will be turned off otherwise. We will trigger the
ADC module with the Timer 2 module. Here, the sampling frequency will be set
as 1 kHz. In order to configure the ADC module, please see the examples given in
Chap. 7. The DMA is configured from the “DMA2” window as “Circular” mode
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with no FIFO, half-word data width for both peripheral and memory, and auto
increment for memory. The stream is selected as DMA 2 Stream 0. Priority of
the DMA is left as “Low” since there is no additional DMA stream used in the
code. DMA 2 module stream 0 global interrupt is enabled automatically. However,
the ADC interrupt must be enabled manually from the “NVIC Settings” window.
Finally, DMA “Continuous Request” must be enabled from the “ADC 1 Parameter
Settings” window. We provide the C code for our second example in Listing 9.15.
Please place the given code parts to appropriate places in the “main.c” file.

Listing 9.15 Obtaining ADC data using the DMA module

/* USER CODE BEGIN PV */
uint16_t data[16];
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
float ConvertToVoltage(uint16_t in)
{
return (float)in * 3.3 / 4095;
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
int i;
float average = 0;
for (i = 0; i < 16; i++)
{
average += ConvertToVoltage(data[i]);
}
average /= 16;
if (average > 2.5)
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA(&hadc1, (uint32_t *)data, 16);
HAL_TIM_Base_Start(&htim2);
/* USER CODE END 2 */

We perform memory to memory data transfer in our third example. Here, the
string “stm32f4discovery” will be transferred from one memory location to another
using DMA. The green LED, connected to pin PG13 of the STM32F4 board, will
be turned on to indicate end of data transfer. The DMA is configured from the
“MemToMem” window as “Circular” mode half FIFO threshold, byte data width
for both source and destination memory and single burst size. Auto increment for
both source and destination memory are also enabled. Finally, DMA 2 stream 0
is selected. DMA 2 module stream 0 global interrupt is enabled from the “NVIC
Settings” window. Normal mode with FIFO is selected automatically for memory
to memory transfer. We provide the C code for our third example in Listing 9.16.
Please place the given code parts to appropriate places in the “main.c” file.
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Listing 9.16 Transferring data from memory to memory using DMA module

/* USER CODE BEGIN PV */
uint8_t srcArray[16] = "stm32f4discovery";
uint8_t dstArray[16];
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
static void DMATransferComplete(DMA_HandleTypeDef *DmaHandle)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_DMA_RegisterCallback(&hdma_memtomem_dma2_stream0 ,

HAL_DMA_XFER_CPLT_CB_ID , DMATransferComplete);

HAL_DMA_Start_IT(&hdma_memtomem_dma2_stream0 , (uint32_t)srcArray ,
(uint32_t)dstArray , 16);

/* USER CODE END 2 */

9.5 Flexible Memory Controller

Available memory on the STM32F4 microcontroller may not be sufficient for some
applications. External memory chips (as RAM or flash memory) may be needed
for such cases. The flexible memory controller (FMC) module on the STM32F4
microcontroller is the dedicated unit used for this purpose. Through it, we can easily
communicate with an external memory chip. As a side note, the FMC module can
also be used to communicate with different LCD interfaces. However, we will only
consider FMC module usage for reaching and using the SDRAM module available
on the STM32F4 board.

9.5.1 FMCWorking Principles

The address space allocated for FMC usage in the STM32F4 microcontroller is
divided into banks. Each bank can be used to communicate with a different memory
type. As can be seen in Fig. 9.12, two different banks are allocated for SDRAM
communication. This allows using two different RAM chips at the same time.

Each bank in FMC has size of 256 MB. Data transfer size within these banks
can be 8, 16, or 32 bits. The maximum clock speed supported by FMC is half of
the HCLK. Hence, it is half of the maximum clock speed in the microcontroller.
This indicates that reaching an external RAM location will be slower compared to
reaching RAM on the STM32F4 microcontroller.

In order to use the SDRAM on the STM32F4 board by the FMC module, we
should adjust several timing values. We summarize them as follows. Load mode
register to active delay (tMRD) is the delay between load mode register command
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and activate or refresh command. Exit self-refresh delay (tXSR) is the delay between
self-refresh command and activate command. Self-refresh time (tRAS) is used to
set minimum self-refresh period. SDRAM common row cycle delay (tRC) is the
delay between refresh command and activate command or between two consecutive
refresh commands. Write recovery time (tWR) is the delay between write command
and precharge command. SDRAM common row precharge delay (tRP) is the delay
between precharge command and another command. Row to column delay (tRCD)
is the delay between activate command and read/write command.

9.5.2 FMC Setup in the STM32F4Microcontroller

We can use the FMC module in C, C++, and MicroPython languages. Therefore, we
provide the setup procedure for the module in this section.

9.5.2.1 Setup via C Language
We have two options to set up the FMC module in C language. The first option
is based on HAL library functions. The second option is based the board support
package (BSP) usage. We will next consider them separately.

Setup via HAL Library Functions
We can obtain the timing values for our SDRAM on the STM32F4 board from its
datasheet [2]. Then, we can make necessary calculations to obtain the integer values
to be entered to the related STM32CubeMX interface as follows. In our SDRAM,

Fig. 9.12 FMC address banks for the SDRAM
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Fig. 9.13 FMC mode and
configuration window

one memory clock cycle can be calculated as 11.11 ηc (1/(90 ∗ 10−6) s). Hence,
tMRD should be set to two memory clock cycles. tXSR should be set to seven
memory clock cycles. tRAS should be set to four memory clock cycles. tRC should
be set to six memory clock cycles. tWR should be set to two memory clock cycles.
tRP should be set to two memory clock cycles. Finally, tRCD should be set to two
memory clock cycles.

Next, we assume that a project has already been created under STM32CubeIDE.
In order to configure the FMC module for SDRAM under STM32CubeMX, go to
the “Connectivity” dropdown menu in “Pinout & Configuration” window and select
“FMC.” Opening “FMC Mode and Configuration” window will be as in Fig. 9.13.
In order to enable the FMC for SDRAM, go to SDRAM 1 or SDRAM 2, and select
“SDCKE0+SDNE0” or “SDCKE1+SDNE1” from the “Clock and chip enable”
dropdown list to select one of the clock and chip enable pin pairs. The number of
internal SDRAM banks can be selected as 2 or 4 from the “Internal bank number”
dropdown list. Number of address bits should be entered as 11, 12, or 13 to the
“Address box.” Number of data bits should be selected as 8 or 16 from the “Data”
dropdown list. Finally, 16 bit byte enable checkbox is used to enable “FMC_NBL0”
and “FMC_NBL1” pins. These are used to control data mask pins of the 16 bit
SDRAM. Low byte and/or high byte of the data can be enabled or disabled using
“FMC_NBL0” and “FMC_NBL1” pins, respectively.

Remaining SDRAM configurations are realized in the “Configuration” window
as in Fig. 9.14. Here, SDRAM bank is selected automatically according to the
selected clock and chip enable bits. Bank 1 is selected when SDCKE0+SDNE0
is set. Bank 2 is selected when SDCKE1+SDNE1 is set. Number of column and
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Fig. 9.14 FMC
configuration window

row address bits are selected from related dropdown lists. Column access strobe
(CAS) latency can be selected as one, two, or three memory clock cycles from
the related dropdown list. CAS latency describes the time duration between the
moment an instruction is given for a column and the moment data is available.
Write protection of SDRAM can be enabled/disabled from the related dropdown
list. SDRAM common clock dropdown list is used to set SDRAM clock frequency.
It can be selected as “2 HCLK” or “3 HCLK” clock cycles to set frequency as
HCLK/2 or HCLK/3, respectively. Burst read mode can be enabled/disabled from
the “SDRAM common burst read” dropdown list. SDRAM common read pipe delay
dropdown list is used to specify additional data read delay after CAS latency. It can
be selected as zero, one, or two HCLK clock cycles. There are also some time-
related configurations under “SDRAM timing in memory clock cycles section” as
described in Sect. 9.5.1.

Setup via BSP Functions
We can also benefit from the board support package (BSP) drivers provided
by STMicroelectronics for configuring the FMC. BSP drivers are introduced by
STMicroelectronics to simplify the usage of external modules via predefined
functions. These use HAL library functions in the background. Unfortunately, BSP
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Fig. 9.15 Configuring
STM32CubeMX for the FMC
module usage

drivers require all onboard module connections to be activated in STM32CubeIDE.
As an example, if we want to use a module using FMC on the board, we should also
activate I2C, SPI, LTDC, and SDRAM in STM32CubeIDE to use BSP drivers.

In order to use BSP drivers for the FMC module, we should first open a
new project; press the “.ioc” file to open the “Device Configuration Tool” in
STM32CubeIDE. Since all configurations are done by BSP drivers, we just have
to enable the used peripheral devices in STM32CubeMX. To be more specific,
we should select mode of the peripheral in its “mode and configuration window”
as follows. We should set “I2C: I2C” under the I2C3 module; “Mode: Full-
Duplex Master” under the SPI5 module; “Activated: checkbox” checkbox under the
DMA2D module; and “Display Type: RGB565 (16bits)” under the LTDC module.
SDRAM1 configuration under FMC should be as in Fig. 9.15. Besides, we should
set the system clock to 180 MHz under the clock configuration tab by entering
HCLK (MHz) 180. We should also set the LCD-TFT clock to 6 MHz by entering 6
(MHz).

As we save the “.ioc” file, the “main.c” file will be generated automatically.
We should add BSP drivers to the project. To do so, right-click on the
project under “Project Explorer.” Click “Import,” select “File System” under
“General,” and click “Next.” We should add the complete address of the most
recent STM32F429 folder as Users User_Name STM32Cube Repository
STM32Cube_FW_F4_V1.26.1. Then, we should select the folders “Drivers/B-
SP/Components,” “Drivers/BSP/STM32F429I-Discovery,” and “Utilities/Fonts” as
in Fig. 9.16.

Next, we should right-click on the project in “Project Explorer” to open its prop-
erties. Afterward, we should click on “Paths and Symbols” under “C/C++ General”
in the opening window. We should press the “Add. . . ” button under “Includes”
section on the right. Then, we should select the added folder “Drivers/BSP” from the
Workspace->Project_Name files as in Fig. 9.17. Afterward, we should select “Add
to all configurations” and “Add to all languages” and press “OK.” Finally, we should
add the below C code script to the appropriate place in the “main.c” file.

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_sdram.h"
/* USER CODE END Includes */
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Fig. 9.16 Importing BSP
drivers to the project under
STM32CubeIDE

9.5.2.2 Setup via C++ Language
We can also benefit from the BSP drivers to use the FMC module in C++ language.
We have two options at this stage. We will explain each option next. First, we should
open a new project under Mbed Studio.

To apply the first option, we should right-click on the project and click on
the “add library” button. Afterward, we should include the BSP library via
the link http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-
M/code/BSP_DISCO_F429ZI/. As the “Next” button is pressed, the interface asks
for “Branch” or “Tag.” We can keep the default value. STMicroelectronics officially
formed the BSP FMC wrapper library for Mbed. In this library, they formed the
functions as class members. We forked this library to use with the latest Mbed
version (Mbed OS6). To use this library, we should include the BSP library via
the link http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-
M/code/SDRAM_DISCO_F429ZI/. As the “Next” button is pressed, the interface
asks for “Branch” or “Tag.” We can keep the default value. Then, we can use the
BSP drivers by adding the code line #include "SDRAM_DISCO_F429ZI.h" to our
main file.

http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/BSP_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/BSP_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/SDRAM_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/SDRAM_DISCO_F429ZI/
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Fig. 9.17 Including BSP drivers to the project under STM32CubeIDE

To apply the second option, we will not make any specific modifications in
project properties. We should only add the folders “Libraries\Cpp\BSP_DISCO_
F429ZI” and “Libraries\Cpp\SDRAM_DISCO_F429ZI” directly to the project
folder. To note here, these codes are available in the accompanying book web
site. Then, we can use the BSP drivers by adding the code line #include
“SDRAM_DISCO_F429ZI.h” to our main file.

9.5.2.3 Setup via MicroPython
MicroPython has no class to perform SDRAM operations. Therefore, we created
a sdram class in our custom MicroPython firmware. The SDRAM module can
be created and initialized using the function init(). All GPIO, FMC, and
SDRAM module configurations are done automatically within this function. Timing
configurations and initialization sequence for SDRAM module are also realized in
this function. After calling this function, the SDRAM module will be ready to be
used.
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9.5.3 FMC Usage in the STM32F4Microcontroller

In this section, we will consider the FMC module usage. We next provide how to do
this in C, C++, and MicroPython languages.

9.5.3.1 Usage via C Language
As we setup the FMC module in C language via HAL library or BSP functions,
we can use the module accordingly. Therefore, we will next consider each option
separately.

Usage via HAL Library Functions
After setting the FMC properties for SDRAM, related FMC initialization code
is created under the function MX_FMC_Init. The function is called automatically
in the “main.c” file. Then, SDRAM can be configured by using the function
HAL_SDRAM_SendCommand. Also memory refresh rate of the SDRAM can be set
using the function HAL_SDRAM_ProgramRefreshRate. As SDRAM is config-
ured, data can be read or written using the functions HAL_SDRAM_Read_Xb or
HAL_SDRAM_Write_Xb, respectively. Here, X can be selected as 8, 16, or 32 for
selecting data transfer size. More information on these functions are given next.

HAL_SDRAM_Read_Xb(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress
, uintX_t *pDstBuffer , uint32_t BufferSize)

/*
hsdram: pointer to the SDRAM\_HandleTypeDef struct.
pAddress: pointer to beginning SDRAM address for read process
DstAddress: pointer to destination buffer
BufferSize: size of the destination buffer
*/

HAL_SDRAM_Write_Xb(SDRAM_HandleTypeDef *hsdram, uint32_t *
pAddress , uintX_t *pDstBuffer , uint32_t BufferSize)

/*
hsdram: pointer to the SDRAM_HandleTypeDef struct.
pAddress: pointer to beginning SDRAM address for write process
DstAddress: pointer to source buffer
BufferSize: size of the source buffer
*/

HAL_SDRAM_ProgramRefreshRate(SDRAM_HandleTypeDef *hsdram,
uint32_t RefreshRate)

/*
hsdram: pointer to the SDRAM_HandleTypeDef struct.
RefreshRate: Refresh rate of SDRAM
*/

HAL_SDRAM_SendCommand(SDRAM_HandleTypeDef *hsdram,
FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout)

/*
hsdram: pointer to the SDRAM_HandleTypeDef struct.
Timeout: timeout duration
Command: SDRAM command struct given below.
typedef struct
{

uint32_t CommandMode; // SDRAM Command. It can
be FMC_SDRAM_CMD_NORMAL_MODE , FMC_SDRAM_CMD_CLK_ENABLE ,
FMC_SDRAM_CMD_PALL_MODE , FMC_SDRAM_CMD_AUTOREFRESH_MODE ,
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FMC_SDRAM_CMD_LOAD_MODE , FMC_SDRAM_CMD_SELFREFRESH_MODE , or
FMC_SDRAM_CMD_POWERDOWN_MODE.

uint32_t CommandTarget; // SDRAM Bank number. It
can FMC_SDRAM_CMD_TARGET_BANK1 or
FMC_SDRAM_CMD_TARGET_BANK2.

uint32_t AutoRefreshNumber; // Number of consecutive
auto refresh command issued in auto refresh mode.

uint32_t ModeRegisterDefinition; // Value of the Mode
Register of SDRAM

}FMC_SDRAM_CommandTypeDef;
*/

Let’s provide an example on the usage of the FMC module for SDRAM. In this
example, 16×32 bit data is written to the onboard SDRAM. Then, the data is read
back. If the written and read data match, the green LED connected to pin PG13 of
the STM32F4 board is turned on. Otherwise, the red LED connected to pin PG14 is
turned on. In this example, HCLK is set to 180 MHz using the external HSE crystal.

The SDRAM on the STM32F4 board has SDCKE1 and SDNE1 pins connected
to clock end chip enable pins. Hence, they must be selected from STM32CubeMX.
This SDRAM has 4 banks, 12 address pins, and 16 data pins. Related parts
are configured accordingly. FMC_NBL0 and FMC_NBL1 pins are connected
physically to the SDRAM. Hence, 16-bit byte enable checkbox is selected even
this property is not used in code. SDRAM has 12 row bits and 8 column bits. CAS
latency can be programmed as 2 or 3. We will set it to 2. Burst or write protection
will not be used. SDRAM clock is set to 90 MHz by setting SDRAM common clock
to 2 HCLK. SDRAM uses a pipelined architecture. Hence, there is no delay between
read commands such that SDRAM common read pipe delay is set to 0 HCLK.
Afterward, SDRAM timing configurations are realized as explained in Sect. 9.5.2.1.
We formed an initialization function for this purpose.

The SDRAM bank 2 is addressed between 0xD0000000 and 0xDFFFFFFF.
We select 0xD0000E00 as the starting address of SDRAM. Before using
the SDRAM, we should initialize it. Initialization steps for the SDRAM
are as follows. After power-up, the memory clock is stabilized with DQM
and CKE high for 100 μs. This step can be realized by setting Command-
Mode to FMC_SDRAM_CMD_CLK_ENABLE. CommandTarget is set to
FMC_SDRAM_CMD_TARGET_BANK2 and it will not change through the ini-
tialization process. Auto refresh and mode registers are not used at this step. Hence,
AutoRefreshNumber and ModeRegisterDefinition are set to 0. Then, command
is sent to SDRAM and system is delayed for 1 ms. All banks are precharged
to leave them in idle state. This step can be realized by setting CommandMode
to FMC_SDRAM_CMD_PALL. Then, the command is sent to SDRAM. At
least two AUTO REFRESH cycles are performed. This step can be realized
by setting CommandMode to FMC_SDRAM_CMD_AUTOREFRESH_MODE
and AutoRefreshNumber is set to 3. Then, this command is sent to SDRAM.
Finally, the mode register is programmed. Mode register has 12 bits. Bits 11 and
10 are reserved and must be set to logic level 0. Bit 9 is used to specify the
write burst mode. Bits 8 and 7 are used to specify the operating mode. Standard
operation is selected by resetting these bits and only this mode can be used.
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Bits from 6 to 4 are used to set CAS latency. They must be set to 0b011 for
three and 0b010 for two memory clock cycles. Bit 3 is used to specify the burst
type. Bits from 2 to 0 are used to specify the burst length. This step can be
realized by setting CommandMode to FMC_SDRAM_CMD_LOAD_MODE and
ModeRegisterDefinition to 0b000000100000 since burst is not enabled and CAS
is set to 2. Then, this command is sent to SDRAM.

After initialization, SDRAM refresh rate is set. According to the SDRAM
datasheet, 4096 refresh cycles are realized every 64 ms. Hence, input of the func-
tion HAL_SDRAM_ProgramRefreshRate is calculated as (90000000×0.064/4096).
Then, SDRAM is ready for write/read operations. We provide the C code for our
example in Listing 9.17. Please place the given code parts to appropriate places in
the “main.c” file.

Listing 9.17 Using SDRAM with FMC module

/* USER CODE BEGIN PV */
FMC_SDRAM_CommandTypeDef myCommand;

uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};
uint32_t receiveArr[16];
uint32_t refreshRate;
uint8_t errorFlag = 0;
uint32_t i;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void SDRAM_Init(void)
{
myCommand.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
myCommand.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2;
myCommand.AutoRefreshNumber = 0;
myCommand.ModeRegisterDefinition = 0;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
HAL_Delay(1);
myCommand.CommandMode = FMC_SDRAM_CMD_PALL;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
myCommand.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
myCommand.AutoRefreshNumber = 3;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
myCommand.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
myCommand.ModeRegisterDefinition = 0b000000100000;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
SDRAM_Init();
refreshRate = (uint32_t)(90000000 * 0.064 / 4096);
HAL_SDRAM_ProgramRefreshRate(&hsdram1, refreshRate);
HAL_SDRAM_Write_32b(&hsdram1, (uint32_t *)(0xD0000E00), sourceArr

, 16);
HAL_SDRAM_Read_32b(&hsdram1, (uint32_t *)(0xD0000E00), receiveArr

, 16);
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for (i = 0; i < 16; i++)
{
if (sourceArr[i] != receiveArr[i])
{
errorFlag = 1;
break;
}
}
if (errorFlag == 1)
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
/* USER CODE END 2 */

We next repeat our first FMC example via pointer usage. To do so, we should
set up a new project with the same settings as in the first one. We will only
modify the C code in Listing 9.17 such that instead of using the functions
HAL_SDRAM_Write_32b and HAL_SDRAM_Read_32b, we will benefit from point-
ers. Hence, we will read and write data to memory as if we are reaching an array.
We provide the modified code in Listing 9.18.

Listing 9.18 Using SDRAM with FMC module with pointer usage

/* USER CODE BEGIN PV */
FMC_SDRAM_CommandTypeDef myCommand;

uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};
uint32_t receiveArr[16];
uint32_t refreshRate;
uint8_t errorFlag = 0;
uint32_t i;
uint32_t *memDataAddress;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void SDRAM_Init(void)
{
myCommand.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
myCommand.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK2;
myCommand.AutoRefreshNumber = 0;
myCommand.ModeRegisterDefinition = 0;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
HAL_Delay(1);
myCommand.CommandMode = FMC_SDRAM_CMD_PALL;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
myCommand.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
myCommand.AutoRefreshNumber = 3;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
myCommand.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
myCommand.ModeRegisterDefinition = 0b000000100000;
HAL_SDRAM_SendCommand(&hsdram1, &myCommand , 100);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
SDRAM_Init();
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refreshRate = (uint32_t)(90000000*0.064/4096) ;
HAL_SDRAM_ProgramRefreshRate (&hsdram1 , refreshRate);

memDataAddress = (uint32_t*)0xD0000E00;

for(i = 0; i < 16; i++){
*(memDataAddress + i)= sourceArr[i];
}

for(i = 0; i < 16; i++){
receiveArr[i] = *(memDataAddress + i);
}

for(i = 0; i < 16; i++){
if(sourceArr[i] != receiveArr[i]){
errorFlag = 1;
break;
}
}
if(errorFlag == 1) HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 ,

GPIO_PIN_SET);
else HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
/* USER CODE END 2 */

Usage via HAL Library Functions
We will next benefit from the available BSP driver functions to use the SDRAM
via FMC module in C language. There are three functions for the blocking (polling)
mode operation of the SDRAM module. The function BSP_SDRAM_Init is used
to initialize the onboard SDRAM. The functions BSP_SDRAM_WriteData and
BSP_SDRAM_ReadData are used to write data to and read data from the SDRAM,
respectively. We next provide these functions in detail.

uint8_t BSP_SDRAM_Init(void)
uint8_t BSP_SDRAM_WriteData(uint32_t uwStartAddress , uint32_t *

pData, uint32_t uwDataSize)
/*
uwStartAddress: write start address of SDRAM.
pData: pointer of the data to be written
uwDataSize: size of the data to be written
*/

uint8_t BSP_SDRAM_ReadData(uint32_t uwStartAddress , uint32_t *
pData, uint32_t uwDataSize)

/*
uwStartAddress: read start address of SDRAM.
pData: pointer of the data to be read
uwDataSize: size of the data to be read
*/

We next repeat the example Listing 9.17 now by using BSP functions. We provide
the modified C code for this purpose in Listing 9.19.
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Listing 9.19 Using SDRAM with FMC module via BSP functions

/* USER CODE BEGIN PD */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_sdram.h"
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};
uint32_t receiveArr[16];
uint8_t errorFlag = 0;
uint32_t i;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
BSP_SDRAM_Init();
BSP_SDRAM_WriteData((uint32_t)(0xD0000E00), sourceArr , 16);
BSP_SDRAM_ReadData((uint32_t)(0xD0000E00), receiveArr , 16);
for (i = 0; i < 16; i++)
{
if (sourceArr[i] != receiveArr[i])
{
errorFlag = 1;
break;
}
}
if (errorFlag == 1)
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
/* USER CODE END 2 */

To execute the C code in Listing 9.19, we should open a new project under
STM32CubeIDE. Then, we should apply the settings in Sect. 9.5.2.1. We should
also add the BSP driver files. As we debug and run the code, 16×32 bit data will be
written to the onboard SDRAM. Then, it is read back. If the written and read data
match, the green LED connected to pin PG13 of the STM32F4 board will turn on.
Otherwise, the red LED connected to pin PG14 will turn on.

We can also repeat the example in Listing 9.18 using BSP functions. To do so, we
formed the C code in Listing 9.20. In this code, first the FMC is initialized. Then,
we use pointer operations to write data to the onboard SDRAM. Then, it is read
back. We can debug and run the code as in the previous example.

Listing 9.20 Using SDRAM with FMC module via BSP functions with pointer usage

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_sdram.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
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0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};
uint32_t receiveArr[16];
uint8_t errorFlag = 0;
uint32_t i;
uint32_t *memDataAddress;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
BSP_SDRAM_Init();

// BSP_SDRAM_WriteData((uint32_t)(0xD0000E00), sourceArr, 16);
// BSP_SDRAM_ReadData((uint32_t)(0xD0000E00), receiveArr , 16);
memDataAddress = (uint32_t*)0xD0000E00;

for(i = 0; i < 16; i++){
*(memDataAddress + i)= sourceArr[i];
}

for(i = 0; i < 16; i++){
receiveArr[i] = *(memDataAddress + i);
}

for (i = 0; i < 16; i++)
{
if (sourceArr[i] != receiveArr[i])
{
errorFlag = 1;
break;
}
}
if (errorFlag == 1)
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
else
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
/* USER CODE END 2 */

9.5.3.2 Usage via C++ Language
The official STMicroelectronics BSP SDRAM library for Mbed can be reached from
https://os.mbed.com/teams/ST/code/SDRAM_DISCO_F429ZI/. As mentioned in
Sect. 9.5.2.2, we forked this library to use with the most recent Mbed OS version.
The BSP driver functions in this library are formed as class members. We provide
details of the class members next.

SDRAM_DISCO_F429ZI()
/*
Class constractor. Initializes the SDRAM device.
*/

void SDRAM_DISCO_F429ZI::Init(void)
/*
Initializes the SDRAM device.
*/

void SDRAM_DISCO_F429ZI::ReadData(uint32_t uwStartAddress ,
uint32_t *pData, uint32_t uwDataSize)

/*
Reads an mount of data from the SDRAM memory in polling mode.
uwStartAddress : Read start address

https://os.mbed.com/teams/ST/code/SDRAM_DISCO_F429ZI/
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pData : Pointer to data to be read
uwDataSize: Size of read data from the memory
*/

void SDRAM_DISCO_F429ZI::WriteData(uint32_t uwStartAddress ,
uint32_t *pData, uint32_t uwDataSize)

/*
Writes an mount of data to the SDRAM memory in polling mode.
uwStartAddress : Write start address
pData : Pointer to data to be written
uwDataSize: Size of written data from the memory
*/

The library contains the Init function for initialization. The constructor of the
class SDRAM_DISCO_F429ZI also performs the initialization operation. The class
function ReadData reads an amount of data from the SDRAM memory. The class
function WriteData writes an amount of data to the SDRAM memory.

We next repeat the two examples in the previous section in C++ language. To do
so, we formed the C++ codes in Listings 9.21 and 9.22. These codes perform the
same operations as with the ones in Listings 9.17 and 9.18, respectively.

Listing 9.21 Using SDRAM with FMC module

#include "SDRAM_DISCO_F429ZI.h"
#include "mbed.h"
#include <cstdio>

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

SDRAM_DISCO_F429ZI sdram;

uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};

uint32_t receiveArr[16];

bool errorFlag = false;

int main()
{
redLED = 0;
greenLED = 0;

sdram.WriteData(0xD0000E00 , sourceArr, 16);
sdram.ReadData(0xD0000E00, receiveArr , 16);

for (int i = 0; i < 16; i++)
{
if (sourceArr[i] != receiveArr[i])
{
errorFlag = true;
break;
}
}
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if (errorFlag)
redLED = 1;
else
greenLED = 1;

while (true)
{
thread_sleep_for(1000);
}
}

Listing 9.22 Using SDRAM with FMC module with pointer usage

#include "SDRAM_DISCO_F429ZI.h"
#include "mbed.h"
#include <cstdio>

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

SDRAM_DISCO_F429ZI sdram;

uint32_t sourceArr[16] = {
0x01020304, 0x05060708 , 0x090A0B0C, 0x0D0E0F10,
0x11121314, 0x15161718 , 0x191A1B1C, 0x1D1E1F20,
0x21222324, 0x25262728 , 0x292A2B2C, 0x2D2E2F30,
0x31323334, 0x35363738 , 0x393A3B3C, 0x3D3E3F40};

uint32_t receiveArr[16];

bool errorFlag = false;
uint32_t i;
uint32_t *memDataAddress;

int main()
{
redLED = 0;
greenLED = 0;

memDataAddress = (uint32_t*)0xD0000E00;

for(i = 0; i < 16; i++){
*(memDataAddress + i)= sourceArr[i];
}

for(i = 0; i < 16; i++){
receiveArr[i] = *(memDataAddress + i);
}

for (int i = 0; i < 16; i++)
{
if (sourceArr[i] != receiveArr[i])
{
errorFlag = true;
break;
}
}

if (errorFlag)
redLED = 1;
else
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greenLED = 1;

while (true)
{
thread_sleep_for(1000);
}
}

9.5.3.3 Usage via MicroPython
There are three functions as write8b(pAddress, pSrcBuffer), write16b
(pAddress, pSrcBuffer), and write32b(pAddress, pSrcBuffer) to write
data to SDRAM in our custom MicroPython firmware. These functions are used
to write 8, 16, and 32 bit data packages to the SDRAM, respectively. In all these
functions, pAddress is a list with two elements representing the beginning of the
32 bit SDRAM address for write process. The first element of the pAddress is the
high 16 bit of 32 bit SDRAM address. The second element of the pAddress is the
low 16 bit of 32 bit SDRAM address. The pSrcBuffer is the list which holds data
to be written as 8, 16, or 32 bit elements according to the function. The function
read8b(pAddress, BufferSize) is used to read 8-bit data from the SDRAM.
The BufferSize is used to determine the number of bytes which will be read from
the SDRAM.

We next provide an example on the usage of MicroPython functions to read and
write data to the SDRAM on the STM32F4 board. Here, three 32-bit data are written
to the SDRAM starting from a specific address. Then, the same data is read from
the SDRAM as 12 bytes and printed in a loop. We provide the MicroPython code
for our example in Listing 9.23.

Listing 9.23 Using SDRAM with FMC module, the MicroPython code

import sdram

sdram.init()
sdram.write32b([0xD000, 0x0E00], [0x01020304 , 0x05060708 , 0

x090A0B0C], 3)
data = sdram.read8b([0xD000, 0x0E00], 12)

for i in range(12):
print(data[i])

9.6 Application: Memory-Based Operations in the Robot
Vacuum Cleaner

We handle the map generation and sweeping algorithms to be used by our robot
vacuum cleaner in this chapter. Moreover, we store the location, sweeping mode,
and other important information to SDRAM as the robot is turned off. We provided
the equipment list, circuit diagram, detailed explanation of design specifications,
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and peripheral unit settings in a separate document in the folder "Chapter9\
EoC_applications" of the accompanying supplementary material. In the same
folder, we also provided the complete C, C++, and MicroPython codes for the
application.

9.7 Summary of the Chapter

Memory is scarce in embedded systems. Therefore, memory management requires
special consideration in them. Due to the importance of the topic, we focused
on memory and memory management in this chapter. To do so, we started with
general definitions for RAM and flash memory. Then, we explored how memory
management can be done in C, C++, and MicroPython languages. We also evaluated
DMA and FMC as dedicated hardware modules for RAM usage. We also expanded
our previously introduced real-world example by adding memory management
property to it as the end of chapter application. Being scarce, memory space (both
as RAM and flash memory) should be used with caution. This chapter provides
methods to perform this. Hence, the reader can develop better embedded code by
mastering them.

Problems

9.1. What do AMBA, AHB, and APB stand for? Where are they used?

9.2. Explain memory data storage blocks for RAM and flash memory.

9.3. How can code and data be protected in a microcontroller? How is this done in
the STM32F4 microcontroller?

9.4. Obtain the ID of your STM32F4 microcontroller by forming a project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.

9.5. Form a project with the following specifications. There is an array of unsigned
characters with size 160 × 120. Fill this array with random (unsigned character)
numbers ranging from 0 to 255. We would like to calculate the occurrence of
each unsigned character value in the array. Hence, form an unsigned integer array
with 256 elements. We can call this array as histogram. Use the function call by
reference method to calculate the occurrence of each unsigned character value in
the array. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.
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9.6. Form a project to implement a state machine using function pointers. There
are five states in the machine as A, B, C, D, and E. B is the initial state and state
machine runs as B -> C -> E -> A -> D -> B. State transitions occur by the user
button press on the STM32F4 board. Form the project using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.

9.7. Form a project with the following specifications. There should be a function in
the C code. We would like to count how many times this function has been called
during code execution. How can this be done by a static variable? Form the project
using:

(a) C language under STM32CubeIDE.
(b) C++ language under Mbed.

9.8. Form a project in MicroPython with the following specifications. In the code,
there will be a function which adds, subtracts, or multiplies two numbers with the
select input. ADD, SUBTRACT, and MULTIPLY are set as constants and they will
be used in the function to select the operation.

9.9. Form a project in MicroPython with the following specifications. In the code,
a pre-allocated buffer is created with 12 elements. This buffer is used to obtain the
string “Hello World!” from PC via UART communication.

9.10. The function gc.mem_free() returns the free heap size in MicroPython.
Form MicroPython project such that the function gc.mem_free() is called in a for
loop 20 times. What happens to free unallocated memory every time this function
is called? Now call the function gc.collect() after each time the function
gc.mem_free() is called. What has changed?

9.11. Form a project in STM32CubeIDE with the following specifications. In the
project, the ADC module is used with DMA property to obtain data from the internal
temperature sensor. The ADC module is triggered with Timer 3 module such that
the sampling frequency is set to 100 Hz. After acquiring 100 samples, their average
is sent to PC via UART module.

9.12. Expand the project in Problem 9.5 such that the array has size 640 × 480.
Here, we should store this array in the external RAM on the STM32F4 board.
Therefore, we should activate and use the FMC module.
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10Real-Time Operating Systems

10.1 Fundamentals of RTOS

Codes we have formed up to now fall into the bare-metal category to indicate that
they are directly executed on the microcontroller. This option becomes unfeasible
when different parts (or functions) of the code try to reach a resource (such as shared
data, code, or peripheral unit) at the same time. For such cases, there should be an
organizer controlling flow of the code to ensure efficient usage of microcontroller
resources. RTOS is introduced for this purpose. This is done by adding an extra
code layer to handle all resource management and organization operations. Hence,
extra code and RAM usage requirements emerge. However, these overheads become
acceptable compared to the advantages offered by RTOS. To note here, codes written
by RTOS follow a different structure compared to bare-metal programming.

10.1.1 RTOS Components

Forming code with RTOS is not as straightforward as in bare-metal programming.
The main reason is that RTOS depends on scheduling operations for efficient usage
of microcontroller resources. This is done by RTOS components specialized for
different operations. The most important component for us is the kernel which is in
fact a scheduler adjusting code flow. Besides, the kernel controls resource sharing
between different parts of the code and allows communication between them. To
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perform all these operations, kernel depends on dividing the code into blocks called
tasks.

A task is similar to a function with one difference. The task has its own stack
(RAM space). The kernel is responsible for scheduling and executing tasks. This is
done by assigning priority levels to them. Besides, other kernel components such
as event, mutex, and semaphore can be used in operation. Kernel also depends on
queue and mail for the communication between tasks. We will explain all these
components in detail in the following sections.

10.1.2 RTOSWorking Principles

We will provide an overview of RTOS working principles in this section. To do
so, let’s start with general layout of a generic RTOS code in Fig. 10.1. As can be
seen in this figure, the code is divided into blocks called tasks. The kernel controls
and organizes task execution based on its priority and state. There is also an idle
task inherent in the generated code. RTOS has this component such that when no
other task is being executed at a specific time instant, the CPU executes the idle task.
Besides, RTOS provides communication option between tasks. If task operations are
modified through this communication, then the event, mutex, or semaphore should
be used. If only data transfer is needed between tasks, then queue or mail should be
used by the kernel.

Now, let’s focus on how RTOS works. As we compile and start executing the
code, the kernel starts working by checking the state and priority level of each task.
If a task is ready to be executed and has the highest priority, then it is executed.

Fig. 10.1 General layout of a generic RTOS code
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The code to be executed within the task should be wrapped by an infinite loop.
The reason for is that, each task will be visited more than once in operation. Within
the infinite loop, there should be a function which yields execution of the current
task and sets the task in wait state. Hence, the kernel calls the next task in ready
state to be executed. If no other task is available to be executed at a given time
instant, then the kernel calls the idle task. This operation goes indefinitely in the
same order. As can be seen here, each task is called based on its priority and state
in RTOS. The aim here is the effective usage of microcontroller resources between
different tasks. As a reminder, resource means data, code, or peripheral unit. We
will explain the task and its properties in detail in Sect. 10.3.

The kernel can start or stop executing a specific task by the help of event, mutex,
or semaphore. Hence, task execution order can be controlled and altered besides its
priority level. We will explain the event usage in detail in Sect. 10.4. Likewise, we
will focus on the mutex and semaphore in Sect. 10.5.

Data transfer may be needed between tasks in operation. We can use queue or
mail for this purpose. We will explain these operations in detail in Sect. 10.6.

All kernel operations in RTOS are done at specific time instants called kernel
ticks. Kernel tick is generated by SysTick (system timer) introduced in Sect. 6.2.4.
The kernel checks status of the currently executed and remaining tasks at each kernel
tick. Based on this, a new task may be started or the existing one may continue
operating. This is done automatically within the kernel.

FreeRTOS has specific functions to perform time-based operations in connection
with kernel. We will handle these topics in Sect. 10.7. Finally, RTOS needs memory
management in operation. We will focus on this topic in Sect. 10.8.

The user can follow RTOS operations while executing a code by advanced debug
features or available software such as Percepio Tracealyzer or Segger SystemView.
Unfortunately, these programs are not free. Hence, we did not cover them in this
book. We suggest the reader to consult one such program when detailed RTOS code
analysis is needed.

10.2 FreeRTOS andMbed OS

We will use FreeRTOS and Mbed OS throughout the chapter. Hence, we will briefly
introduce them in this section. Besides, we will provide how to set up a project with
FreeRTOS and Mbed OS.

10.2.1 FreeRTOS

FreeRTOS is a popular real-time operating system for microcontrollers. It is
distributed freely under the MIT open-source license. Detailed information on
FreeRTOS can be obtained from its web site https://www.freertos.org. The reader
can also consult resources for RTOS components and their usage from the men-
tioned web site.

https://www.freertos.org
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We will use FreeRTOS under STM32CubeIDE. Arm® formed an extra layer on
top of FreeRTOS to be compatible with its CMSIS-based operations. As a result,
RTOS and CMSIS operations do not interfere. As of writing this book, the formed
extra layer was having the version “CMSIS_V2.”

10.2.2 FreeRTOS Project Setup in STM32CubeIDE

We can use FreeRTOS in an STM32CubeIDE project by the help of
STM32CubeMX. To do so, we should open a new project under STM32CubeIDE as
explained in Sect. 3.1.5. Then, we should enable FreeRTOS under the “Middleware”
in the “Category” section of the “Pinout and Configuration” tab. Next, we should
select the “Mode” as “CMSIS_V2” from the “FreeRTOS Mode and Configuration”
section on the right as in Fig. 10.2. We will extensively use this window while
setting other FreeRTOS properties in the following sections.

As explained in Sect. 10.1, RTOS operations are synchronized based on kernel
ticks generated by SysTick. Hence, STM32CubeMX warns the user to pick a HAL
time base source other than SysTick. We can change this source from the “System
Source” section of the “Pinout and Configuration” tab. Here, we should modify the
“Timebase Source” under “Sys Mode and Configuration” under the “Sys” option.
It is generally suggested to use Timer 6 (TIM6) for this operation. We also applied
this setup in our projects in this chapter.

Fig. 10.2 FreeRTOS mode
and configuration selection
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Fig. 10.3 FreeRTOS file
layout from the project
explorer window

As we generate the code from the RTOS setup, all related files will be added
to our project. We can check their layout from the project explorer window as in
Fig. 10.3. As can be seen in this window, FreeRTOS sources are placed under the
folder “Third_Party->FreeRTOS.” FreeRTOS functions for RTOS components can
be found in related C files. For example, all functions related to tasks can be found in
the file “tasks.c.” All CMSIS-RTOS functions can be found in the file “cmsis_os2.c”
which is placed under the folder “CMSIS_RTOS_V2.”

We can observe the “main.c” file contents added specific for FreeRTOS usage
in Listing 10.1. Let’s briefly analyze this file. First of all, handle and attributes
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structures for RTOS components are placed in section Private variables.
Default task handle and its attributes structure including its name, priority, and stack
size have already been placed in this section. After all peripherals are initialized,
RTOS scheduler is initialized using the function osKernelInitialize. Then,
RTOS components are created in associated sections. For example, functions used
to create mutexes are placed between lines USER CODE BEGIN RTOS_MUTEX and
USER CODE END RTOS_MUTEX. After all RTOS components are created, the kernel
is started using the function osKernelStart. Finally, functions which will be
executed for each task are created. For example, the function StartDefaultTask
is created for the default task.

Listing 10.1 Contents of the “main.c” file in a FreeRTOS-based project

/* USER CODE END Header */
/* Includes

------------------------------------------------------------------
*/

#include "cmsis_os.h"

/* Private variables
---------------------------------------------------------*/

/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t)osPriorityNormal ,
};

/* Private function prototypes
-----------------------------------------------*/

void StartDefaultTask(void *argument);

/* Init scheduler */
osKernelInitialize();

/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */

/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores , ... */
/* USER CODE END RTOS_SEMAPHORES */

/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */

/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */

/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask , NULL, &

defaultTask_attributes);

/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
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/* USER CODE END RTOS_THREADS */

/* USER CODE BEGIN RTOS_EVENTS */
/* add events, ... */
/* USER CODE END RTOS_EVENTS */

/* Start scheduler */
osKernelStart();

/* We should never get here as control is now taken by the
scheduler */

/* Infinite loop */

/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END 5 */
}

10.2.3 Mbed OS

We will use Mbed OS under Mbed Studio. This operating system is based on
CMSIS-RTOS RTX. Here, all kernel components are defined as objects and they
are treated as such during code execution. The reader can get more information on
Mbed OS from its web site https://os.mbed.com/docs/mbed-os/.

10.2.4 First Mbed OS Project in Mbed Studio

We can form our first Mbed OS project by an available template as in Sect. 3.2.4. To
do so, we should pick the “mbed-os-example-blinky” project under Mbed Studio.
For completeness, we provide the “main.cpp” file of this project in Listing 10.2.
This will be our base for the remaining Mbed OS projects in this book.

Listing 10.2 The “main.cpp” file of the “mbed-os-example-blinky” project in Mbed Studio

#include "mbed.h"

#define BLINKING_RATE 500ms

int main()
{

https://os.mbed.com/docs/mbed-os/
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DigitalOut greenLED(LED1);

while (true)
{
greenLED = !greenLED;
ThisThread::sleep_for(BLINKING_RATE);
}
}

While compiling the code in Listing 10.2, Mbed Studio includes all related OS
components to the project. Hence, as we modify the code in future applications,
we can benefit from them. As we run the code, the green LED on the STM32F4
board will start blinking. Different from the bare metal example in Sect. 3.2.4, this
operation is done by RTOS components.

10.3 Task and Thread

Task is the main building block in RTOS. Before going further, we should mention
that we have tasks in FreeRTOS and threads in Mbed OS. The main difference
between the task and thread is their usage of memory space in operation. Since
we are dealing with embedded systems in this book, this difference is not visible.
Besides, we could not find a solid reference clearly indicating the difference between
the task and thread in embedded systems. As a side note, the thread and task are
clearly separated in TI RTOS [1] since Texas Instrument assigned specific meaning
to each. In this book, we will always use the task term in FreeRTOS projects to
be compatible with literature. Likewise, we will use the thread term in Mbed OS
projects. While explaining general concepts, we will always use the task term.

10.3.1 TaskWorking Principles

To fully grasp RTOS operations, we should focus on task working principles. To
do so, we should understand task states, task priorities, and idle task. Before going
further, we should mention that each task has a code block wrapped by infinite loop.
However, this does not mean that when the CPU starts executing the task, it will stay
there forever. On the contrary, within the infinite loop, there should be a function
which yields privilege of the current task and let it wait. Hence, the kernel calls the
next ready task to be executed. To do so, the kernel should check two key values.
The first one is the task state. The second one is the task priority. Based on these,
either the next waiting (or blocked) task is called. Or the existing task is executed
again if it has higher priority. We will consider the task state and priority next.

10.3.1.1 Task States
While the kernel is active, a task can be in four different states. We summarize them
according to the FreeRTOS and Mbed OS naming as follows. When the task is being
executed, it is in the “Running” state. There can be only one task in this state at any
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time. The task to be executed next is in the “Ready” state. This can happen either
by the current tasks yielding its privilege to other tasks or letting the running task
to the waiting state. If a task waits for necessary resources to become available,
we call it to be in the “Waiting” state. If a task has not been created yet, it will be
in the “Inactive” state. Based on the defined states, the kernel synchronizes RTOS
operations and changes the state of each task dynamically.

10.3.1.2 Task Priorities
Task priority defines which task should be given precedence in execution.
There are 48 priority levels (excluding the priority level of the idle task)
in FreeRTOS and Mbed OS. These levels are grouped as osPriorityLow,
osPriorityBelowNormal, osPriorityNormal, osPriorityAboveNormal,
osPriorityHigh, and osPriorityRealtime. The priority in these groups go
from lowest to highest as listed. Each group has eight levels within itself. The
priority in each group also goes from lowest to highest from the first to the last
level.

The task with higher priority will always preempt the one with lower priority.
Hence, it will take the precedence in execution. If the running and ready tasks have
the same priority, then the kernel will wait for the running task to end its operation.
As the running task yields, the ready task is executed.

10.3.1.3 Idle Task
Based on the structure of RTOS operations, the kernel calls a task based on its state
and priority. The question arises. What happens when no task is to be called at
certain time instant? For such cases, RTOS consists of an idle task having lowest
priority (set by the system). Hence, when no other task is being executed, the idle
task is called. Any task called afterward preempts the idle task during its execution.

FreeRTOS allows assigning operations to the idle task. Hence, the user can
modify the idle task content. As an example, we can let the CPU to low power mode
in the idle task under FreeRTOS. We will show how this can be done in Sect. 10.3.2.

Mbed OS has a fixed idle task (called idle loop) such that the system goes to low
power mode when it is executed. Hence, we can benefit from both power saving
option and let the CPU to wait in the idle task. We can also assign an operation to
the idle task under Mbed OS. We will show how this can be done in Sect. 10.3.3.

10.3.2 Task in FreeRTOS

We will summarize how tasks are handled in FreeRTOS in this section. We will
provide functions related to task modification and execution as well. To show how
these concepts can be realized, we will also provide task usage examples.

10.3.2.1 Task Setup and Task Functions
As we form a project following the steps in Sect. 10.2.2, the default task is generated.
We can observe its properties under the “Configuration” part of the “FreeRTOS
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Fig. 10.4 FreeRTOS tasks and queues tab in STM32CubeMX

Fig. 10.5 FreeRTOS task
properties window in
STM32CubeMX

Mode and Configuration” section in STM32CubeMX interface. There, we should
visit the “Tasks and Queues” tab as in Fig. 10.4. As can be seen in this figure,
STM32CubeMX does not allow deleting the default task. We can define other tasks
from the same window. We will do so in the following sections.

We can observe and modify properties of a task in the “Tasks and Queues” tab by
double-clicking on it. A new window appears as in Fig. 10.5. Here, the reader can
change the name, priority, stack size (to be explained in detail in Sect. 10.8), entry
function (for the task), and other properties of the task.

As we make modifications in STM32CubeMX and save project files, the
following code segments will be added to three sections of the “main.c” file of the
project.
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/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {

.name = "defaultTask",

.stack_size = 128 * 4,

.priority = (osPriority_t) osPriorityNormal ,
};

/* Create the thread(s) */
/* creation of defaultTask */
defaultTaskHandle = osThreadNew(StartDefaultTask , NULL, &

defaultTask_attributes);

/* USER CODE BEGIN Header_StartDefaultTask */
/**

* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/

/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void *argument)
{

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{

osDelay(1);
}
/* USER CODE END 5 */

}

In the first section, the task handle osThreadId_t is created with the name
defaultTaskHandle. Also, task attributes structure including its name, stack size,
and priority is created. In the second section, the task is created with its handle and
attributes structure using the function osThreadNew. defaultTaskHandle will be
used to call the created task afterward. In the third section, the StartDefaultTask
function can be used to define what to do under the default task (or other tasks to be
added in the following sections). Here, the reader can observe that the task has an
infinite loop. We explained the rationale for this setup in Sect. 10.3.1.

We can summarize the functions related to task management in FreeRTOS as
follows. The function osThreadNew is used to create a new task. The task must
be created after the kernel is initialized with the function osKernelInitialize.
The function osThreadGetName is used to obtain the name of the task. The
function osThreadGetId is used to obtain the id of the active task. The function
osThreadGetState is used to obtain the current state of the task. The function
osThreadSetPriority is used to set a new priority level to the task. The
function osThreadGetPriority is used to obtain the priority level of the task.
The function osThreadYield is used to pass the control to the next task in ready
state. The function osThreadSuspend is used to suspend execution of the task. The
function osThreadResume is used to resume execution of the task. The functions
osThreadDetach and osThreadJoin are used to return all resources used by
the task to the system. Tasks can either be detached or joinable. The function
osThreadDetach is used to change the attribute of the task to detached. Then,
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all resources used by this task are returned to the system when it is terminated.
On the other hand, joinable tasks are kept alive until one explicitly calls the
function osThreadJoin. The function osThreadExit is used to terminate the
calling task. The function osThreadTerminate is used to remove the task from
the list of active tasks. If the current state of the task is running, it is terminated
and the execution continues with the next task in ready state. The function
osThreadGetStackSize is used to obtain the stack size of the task. The function
osThreadGetStackSpace is used to obtain the unused stack size of the task. The
function osThreadGetCount is used to obtain the number of active tasks. The
function osThreadEnumerate is used to obtain the number of enumerated tasks.
Except the function osThreadGetId, other functions cannot be used inside an
interrupt callback function. We next provide detailed information on the mentioned
task functions.

osThreadId_t osThreadNew(osThreadFunc_t func, void *argument ,
const osThreadAttr_t *attr)

/*
func: task function.
argument: pointer to the destination ImageTypeDef struct.
attr: pointer to the struct containing task attributes. Set it to

NULL in order to use default values.
*/

const char* osThreadGetName(osThreadId_t thread_id)
/*
thread_id: id which identifies the thread.
*/

osThreadId_t osThreadGetId(void)

osThreadState_t osThreadGetState(osThreadId_t thread_id)

osStatus_t osThreadSetPriority(osThreadId_t thread_id ,
osPriority_t priority)

/*
priority: new priority level for task
*/

osPriority_t osThreadGetPriority(osThreadId_t thread_id)

osStatus_t osThreadYield(void)

osStatus_t osThreadSuspend(osThreadId_t thread_id)

osStatus_t osThreadResume(osThreadId_t thread_id)

osStatus_t osThreadDetach(osThreadId_t thread_id)

osStatus_t osThreadJoin(osThreadId_t thread_id)

__NO_RETURN void osThreadExit(void)

osStatus_t osThreadTerminate(osThreadId_t thread_id)

uint32_t osThreadGetStackSpace(osThreadId_t thread_id)

uint32_t osThreadGetCount(void)
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uint32_t osThreadEnumerate(osThreadId_t *thread_array , uint32_t
array_items)

/*
thread_array: pointer to array for retrieving thread IDs.
array_items: maximum number of items in array for retrieving

thread IDs.
*/

There are two delay functions in FreeRTOS as osDelay and osDelayUntil.
The function osDelay waits for a time period specified in kernel ticks. For value
one, the system waits until the next kernel tick occurs. The difference of osDelay
from the previously used HAL_Delay is as follows. When osDelay is called, state
of the running task is set to waiting and it yields to the next ready task. Hence,
the kernel can call it. State of the task which executed the osDelay function will
be set to ready automatically after given amount of kernel ticks has elapsed. The
osDelayUntil function waits until the given absolute time value in kernel ticks. If
the given time value is smaller than the current kernel tick value, the task returns to
the ready state immediately. We next provide detailed information on the mentioned
delay functions.

osStatus_t osDelay(uint32_t ticks)
/*
ticks: Number of kernel ticks value.
*/

osStatus_t osDelayUntil(uint32_t ticks)
/*
ticks: absolute time value in kernel ticks.
*/

We should also provide common macros used in FreeRTOS functions. These
have been defined in the “cmsis_os2.h” file under the FreeRTOS folder of the
project. Here, osWaitForever is used to define the timeout value for waiting
forever. osFlagsWaitAny is used to wait for any flag and osFlagsWaitAll is
used to wait for all flags. osFlagsNoClear is used not to clear flags which have
been specified to wait for. osWaitForever is generally used with the wait function
osDelay. osFlagsWaitAny, osFlagsWaitAll, and osFlagsNoClear are used
with the specific task wait function osThreadFlagsWait. We provide detailed
information on the mentioned macros next.

#define osWaitForever 0xFFFFFFFFU

#define osFlagsWaitAny 0x00000000U

#define osFlagsWaitAll 0x00000001U

#define osFlagsNoClear 0x00000002U

10.3.2.2 Task Usage Examples
We next provide three examples on the usage of tasks in FreeRTOS. In the first
example, given in Listing 10.3, we create a new task named myTask02 apart
from the default task. Priority of this task is set to osPriorityAboveNormal,
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which is higher than the priority of the default task. When the code is executed,
myTask02 is called every 0.5 s. However, myTask02 and default tasks become ready
every second. Since myTask02 has higher priority, it is executed first. Then, the
defaultTask is executed as soon as myTask02 yields. In order to see the effect
of the priority better, the reader can change osDelay(500) to HAL_Delay(500)
inside the function StartTask02. Besides, the function osThreadYield() should
also be added after the HAL_Delay function. As we run the modified code, we will
observe that defaultTask cannot be executed since myTask02 has higher priority
and takes control immediately after it yields.

Listing 10.3 The first task example in FreeRTOS

/* USER CODE BEGIN PV */
uint32_t cnt = 0;
/* USER CODE END PV */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
cnt = 1;
printf("defaultTask \n\r");
osDelay(1000);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */

printf("Thread id: 0x%x\n", osThreadGetId());
printf("Thread name: %s\n", osThreadGetName(myTask02Handle));
printf("Thread state: %i\n", osThreadGetState(myTask02Handle));
printf("Thread priority: %i\n", osThreadGetPriority(

myTask02Handle));
printf("Thread used stack size: %lu\n", osThreadGetStackSpace(

myTask02Handle));
/* Infinite loop */
for (;;)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
cnt = 2;
printf("myTask02 \n\r");
osDelay(500);
}
/* USER CODE END StartTask02 */
}

The code in Listing 10.3 is formed such that the green LED on the STM32F4
board is toggled, cnt variable is set to 2, and the string “myTask02” is printed by the
task myTask02 every 0.5 s. The red LED on the STM32F4 is toggled, cnt variable
is set to 1, and the string “defaultTask” is printed by the task defaultTask every
second. By using the cnt variable and printf function, the reader can analyze
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execution of these tasks through ITM properties as explained in Sect. 3.4.1.1. The
id, name, state, priority, and used stack space of myTask02 are also obtained and
printed at the beginning of its execution.

To note here, when we form a FreeRTOS project with default settings, the
function USB init is called at the beginning of the StartDefaultTask. This
delays execution of this task 0.5 s in the first run. Therefore, the reader should
disable the line calling the function USB init when the defaultTask is called.

In the second example, given in Listing 10.4, we modify the idle task of the
project instead of adding a new task. In order to modify and use the idle task in
FreeRTOS, go to “Configuration” part of the “FreeRTOS Mode and Configuration”
section in CubeMX interface. There, we should visit the “Config Parameters” tab
and enable the “USE_IDLE_HOOK” option under the “Hook function related def-
initions.” We should modify the function void vApplicationIdleHook(void)
automatically defined under the “freertos.c” file. This is the function called by idle
task. Hence, we should add the code to be executed by the idle task to this function.

Listing 10.4 The second task example in FreeRTOS

void vApplicationIdleHook(void)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
}

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
HAL_Delay(500);
osDelay(500);
}
/* USER CODE END 5 */
}

In Listing 10.4, the defaultTask turns on the red LED on the STM32F4 board,
halts the process for 0.5 s with the function HAL_Delay, and then yields for 0.5 s
with the function osDelay. The red LED on the STM32F4 board is turned off in
the idle loop. As a result, the red LED toggles every 0.5 s.

In the third example, given in Listing 10.5, we add Timer 2 to the code given in
Listing 10.3. We set period of the Timer 2 to 1 s. In the Timer 2 callback function, the
cnt variable is set to 3 and the string “timer2” is printed. When the code is executed,
myTask02 is called every 0.5 s. However, myTask02 and defaultTask become
ready every second. At the same time, Timer 2 interrupt is also triggered. Here,
Timer 2 interrupt has the highest priority and is executed first. Then, myTask02 is
called. Finally, the defaultTask is called as soon as myTask02 yields. We should
modify ITM properties as explained in Sect. 3.4.1.1 to observe printing results in
this example.
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Listing 10.5 The third task example in FreeRTOS

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE END 2 */

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
if (htim->Instance == TIM6)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
else if (htim->Instance == TIM2)
{
cnt = 3;
printf("timer2 \n\r");
}
/* USER CODE END Callback 1 */
}

If a task function which is not interrupt-safe is used inside the Timer 2 callback
function, then the system crashes as soon as this function is executed. The reader can
try this scenario by printing name of the task myTask02 inside the Timer 2 callback
function. The only interrupt-safe task function is osThreadGetId. The reader can
try this by printing id of the task myTask02 inside the Timer 2 callback function.
He or she can see that the system runs without problem.

10.3.3 Thread in Mbed OS

As Mbed OS starts running, four threads become active. These are the ISR/sched-
uler, idle, timer, and main application threads. Each thread is responsible for its own
operations. We should emphasize an important property here. As can be seen, the
main function is taken as thread under Mbed OS. Hence, we can use it as the default
thread in RTOS operations.

10.3.3.1 Thread Functions
We next summarize thread-related functions under Mbed OS as follows. The
function Thread is used to create the thread with given parameters. The function
start is used to start thread execution. The function join is used to wait for the
thread to terminate. The function terminate is used to terminate execution of the
thread and remove it from the list of active threads. The function set_priority
is used to set the priority of the thread. The function get_priority is used to
obtain the priority of the thread. The function flags_set is used to set the specified
flags for the thread. The function get_state is used to obtain the current state
of the thread. The function stack_size is used to obtain the total stack memory
size of the thread. The function free_stack is used to obtain the unused stack
memory size of the thread. The function used_stack is used to obtain the used
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stack memory size of the thread. The function max_stack is used to obtain the
maximum stack memory usage of the thread to date. The function get_name is
used to obtain the name of the active thread. The function get_id is used to obtain
the id of the active thread. Finally, the function ~Thread is used to destruct the
thread. Except the functions flags_set, get_name, and get_id, the rest cannot
be used inside an interrupt callback function. We provide detailed information on
the mentioned thread functions next.

Thread(osPriority priority=osPriorityNormal , uint32_t stack_size=
OS_STACK_SIZE , unsigned char *stack_mem=nullptr, const char *
name=nullptr)

/*
priority: initial priority level of the thread.
stack_size: stack size of the thread.
stack_mem: pointer for the stack area of the thread.
name: name of the thread.
*/

osStatus start(mbed::Callback < void()> task)
/*
task: function to be executed.
*/

osStatus join()

osStatus terminate()

osStatus set_priority(osPriority priority)
/*
priority: new priority level for thread.
*/

osPriority get_priority()

uint32_t flags_set(uint32_t flags)
/*
flags: specifies the flags of the thread that should be set.
*/

State get_state()

uint32_t stack_size()

uint32_t free_stack()

uint32_t used_stack()

uint32_t max_stack()

const char* get_name()

osThreadId_t get_id()

virtual ~Thread()

There is also the ThisThread namespace under Mbed OS. It can be used to
control the running thread. We will use it occasionally in the following sections.
There may be limited functions associated with ThisThread. Hence, we strongly
suggest the reader to check the Mbed OS web site for this purpose.
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There is the sleep_for function associated with ThisThread. It is used for
sleeping the CPU for a specified time period given by parameter rel_time. This
function cannot be used inside an interrupt callback function. Finally, we should
mention that most of the macros defined for FreeRTOS can also be used in Mbed
OS.

10.3.3.2 Thread Usage Examples
In this section, we provide three examples on the usage of threads in Mbed
OS. In the first example, given in Listing 10.6, we create an additional thread
named thread1 apart from the default main thread. Priority of thread1 is set to
osPriorityAboveNormal, which is higher than the default main thread. As the
code is executed, the green LED on the STM32F4 board is toggled, and the string
“thread1” is printed by the function thread1Fn every 0.5 s. The red LED on the
STM32F4 board is toggled and the string “Main thread” is printed inside the default
main thread every second.

Listing 10.6 The first thread example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityAboveNormal);

void thread1Fn()
{
printf("Thread id: 0x%x\n", thread1.get_id());
printf("Thread name: %s\n", thread1.get_name());
printf("Thread state: %i\n", thread1.get_state());
printf("Thread priority: %i\n", thread1.get_priority());
printf("Thread total stack size: %u\n", thread1.stack_size());
printf("Thread used stack size: %u\n", thread1.used_stack());
while (true)
{
greenLED = !greenLED;
printf("thread1 \n");
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
while (true)
{
redLED = !redLED;
printf("Main thread \n");
ThisThread::sleep_for(1000ms);
}
}

When the code in Listing 10.6 is executed, thread1 is started by the function
thread1Fn at the beginning of the default main thread. The function thread1Fn
is executed every 0.5 s. However, thread1 and default main thread should be
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called every second. Since thread1 has higher priority, it is executed first. The
default main thread is executed as soon as thread1 yields. In order to see the effect
of priority better, the reader should change ThisThread::sleep_for(500ms) to
wait_us(500000) inside the function thread1Fn. It can be seen that default main
thread cannot be executed since thread1 has higher priority and takes the control
immediately after it yields.

In the second example, given in Listing 10.7, we modify the operations in the
idle loop (thread) of the project. Here, the default main thread turns on the red LED
on the STM32F4 board, halts the process for 0.5 s with the function wait_us, then
yields for 0.5 s with the function ThisThread::sleep_for. The red LED is turned
off in the idle loop. As a result, the red LED toggles every 0.5 s.

Listing 10.7 The second thread example in Mbed OS

#include "mbed.h"

DigitalOut redLED(LED1);

void newIdleLoop()
{
redLED = 0;
}

int main()
{

Kernel::attach_idle_hook(newIdleLoop);

while (true)
{
redLED = 1;
wait_us(500000);
ThisThread::sleep_for(500ms);
}
}

In the third example, given in Listing 10.8, we add a ticker (named Ticker1)
to the code given in Listing 10.6. We set period of Ticker1 to 1 s and set its
callback function as ticker1Cb. In this function, both red and green LEDs on the
STM32F4 board are toggled. When the code is executed, thread1 is called every
0.5 s. However, thread1, default main thread, and Ticker1 interrupt coincide at
every second. Since the Ticker1 interrupt has the highest priority, its callback
function ticker1Cb is called first. Then, thread1 is called. Finally, the default
main thread is called as soon as thread1 yields.

Listing 10.8 The third thread example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityAboveNormal);
Ticker ticker1;
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void thread1Fn()
{
while (true)
{
greenLED = !greenLED;
printf("thread1 \n");
ThisThread::sleep_for(500ms);
}
}

void ticker1Cb()
{
redLED = !redLED;
greenLED = !greenLED;
}

int main()
{
thread1.start(thread1Fn);
ticker1.attach(&ticker1Cb, 1s);
while (true)
{
redLED = !redLED;
printf("thread2 \n");
ThisThread::sleep_for(1000ms);
}
}

If any thread function which is not interrupt-safe is used inside the callback
function ticker1Cb, the system crashes as soon as this function is executed.
The reader can try this scenario by calling the function get_priority inside the
callback function ticker1Cb. On the other hand, interrupt-safe thread functions can
be used inside the callback function ticker1Cb without any problem. The reader
can try this scenario by calling the function get_id inside the function ticker1Cb.

10.4 Event

During RTOS operations, we may want to change state of a task by another task.
This can be done by using an event. Let’s start with explaining working principles
of the event.

10.4.1 EventWorking Principles

The event can be used in such a way that it leads one task to waiting or ready state
by another task. This is done by setting and checking predefined trigger values (or
flags). Hence, one task sets a specific flag to be checked by other tasks. When the
task waiting for that specific flag receives it, it acts accordingly either going to the
waiting or ready state.

In order to show working principles of the event, we provide its general usage
layout in Fig. 10.6. As can be seen in this figure, the first task generates an event flag
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Fig. 10.6 General layout of event usage

and sends it to other tasks. Another task should be waiting for this flag in waiting
state. Hence, when the flag is received, that task goes to the ready state. As a result,
one task triggers another by passing the predefined event flag.

10.4.2 Event in FreeRTOS

FreeRTOS has predefined functions and setup options under STM32CubeIDE to
benefit from the event. We provide these options next.

10.4.2.1 Event Setup and Event Functions
We can add an event to our FreeRTOS project in STM32CubeMX by the “Configu-
ration” part of the “FreeRTOS Mode and Configuration” section. There, we should
visit the “Events” tab as in Fig. 10.7. We can observe properties of the event by
double-clicking on it.

As we make modifications in STM32CubeMX and save project files, the
following code segments will be added to the two sections of the “main.c” file of
the project.

/* Definitions for evt */
osEventFlagsId_t evtHandle;
const osEventFlagsAttr_t evt_attributes = {

.name = "evt"
};

/* Create the event(s) */
/* creation of evt */
evtHandle = osEventFlagsNew(&evt_attributes);
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Fig. 10.7 FreeRTOS events tab in STM32CubeMX

In the first section, the event handle osEventFlagsId_t is created with the
name evtHandle. Also, the event attributes structure which includes its name is
created. In the second section, the event is created with its handle and attributes
structure using the function osEventFlagsNew. evtHandle will be used to call the
created event afterward.

The functions related to events in FreeRTOS can be summarized as follows. The
function osEventFlagsNew is used to create a new event flags structure. The event
must be created after the kernel is initialized. The function osEventFlagsSet is
used to set the event flags. The function osEventFlagsClear is used to clear
the event flags. The function osEventFlagsGet is used to obtain the current
event flags. The function osEventFlagsWait is used to suspend execution of the
running task until any or all event flags are set. The function osEventFlagsDelete
is used to delete the event flags object. The function osEventFlagsGetName is
used to obtain the name of the event flags object. Except osEventFlagsNew,
osEventFlagsDelete, and osEventFlagsGetName, the remaining functions can
be used inside an interrupt callback function. We next provide detailed explanation
of the event functions in FreeRTOS.

osEventFlagsId_t osEventFlagsNew(const osEventFlagsAttr_t *attr)
/*
attr: pointer for event attributes struct
*/

uint32_t osEventFlagsSet(osEventFlagsId_t ef_id, uint32_t flags)
/*
ef_id: event flags id.
flags: event flags.
*/

uint32_t osEventFlagsClear(osEventFlagsId_t ef_id, uint32_t flags
)
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uint32_t osEventFlagsGet(osEventFlagsId_t ef_id)

uint32_t osEventFlagsWait(osEventFlagsId_t ef_id, uint32_t flags,
uint32_t options, uint32_t timeout)

/*
options: event flag options.
timeout: event timeout value.
*/

osStatus_t osEventFlagsDelete(osEventFlagsId_t ef_id)

const char* osEventFlagsGetName(osEventFlagsId_t ef_id)

10.4.2.2 Event Usage Examples
In this section, we provide two examples on the usage of events in FreeR-
TOS. In the first example, given in Listing 10.9, we create an additional task
named myTask02 apart from the default task. The priority of this task is set to
osPriorityAboveNormal, which is higher than the priority of the default task. As
the code is executed, the green LED on the STM32F4 board is toggled, cnt variable
is set to 1, event flag is cleared and then set to FLAG2, and the string “defaultTask”
is printed by the default task every 0.5 s if the event flag is FLAG1. The red LED
on the STM32F4 board is toggled, cnt variable is set to 2, event flag is cleared and
then set to FLAG1, and the string “myTask02” is printed by the task myTask02 every
0.5 s if the event flag is FLAG2.

Listing 10.9 The first event example in FreeRTOS

/* USER CODE BEGIN PD */
#define FLAG1 0x01
#define FLAG2 0x10
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t cnt = 0;
/* USER CODE END PV */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG1, osFlagsWaitAny ,

osWaitForever);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
cnt = 1;
osEventFlagsClear(myEvent01Handle , FLAG1);
osEventFlagsSet(myEvent01Handle , FLAG2);
printf("defaultTask \n\r");
osDelay(500);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
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/* USER CODE BEGIN StartTask02 */
osEventFlagsSet(myEvent01Handle , FLAG1);
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG2, osFlagsWaitAny ,

osWaitForever);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
cnt = 2;
osEventFlagsClear(myEvent01Handle , FLAG2);
osEventFlagsSet(myEvent01Handle , FLAG1);
printf("myTask02 \n\r");
osDelay(500);
}
/* USER CODE END StartTask02 */
}

When the code in Listing 10.9 is executed, the event flag is set to FLAG1 at the
beginning of the function StartTask02. The task myTask02 has higher priority
than default task. Therefore, it must be called first. However, both tasks wait for the
event flag which is initially set to FLAG1. Hence, the default task is called first. It
toggles the green LED on the STM32F4 board and sets the event flag to FLAG2. As
soon as the event flag is set to FLAG2, myTask02 gets the precedence. Therefore, it
is called before the default task yields since it has higher priority. As a result, the
red LED on the STM32F4 board is toggled; the event flag is set to FLAG1; the string
“myTask02” is printed. Then, myTask02 yields. Finally, the string “defaultTask” is
printed, the default task yields, and both tasks wait for 0.5 s. We should modify ITM
properties as explained in Sect. 3.4.1.1 to observe printing results in this example.

In the second example, given in Listing 10.10, we modify the code in Listing 10.5
by an additional task and event. The name of the new task is myTask03. Its priority
is set to osPriorityHigh. We set the period of Timer 2 to 1 s. The event flag is
set to FLAG1 inside the Timer 2 callback function. When the flag is set as such, the
task myTask03 is called, cnt variable is set to 3, the string “timer2” is printed, and
the event flag is cleared. Then, myTask02 and default tasks are called according to
their priority level. We should modify ITM properties as explained in Sect. 3.4.1.1
to observe printing results in this example.

Listing 10.10 The second event example in FreeRTOS

/* USER CODE BEGIN PV */
uint32_t cnt = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE END 2 */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
cnt = 1;
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printf("defaultTask \n\r");
osDelay(1000);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
osEventFlagsSet(myEvent01Handle , FLAG1);
/* Infinite loop */
for (;;)
{
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
cnt = 2;
printf("myTask02 \n\r");
osDelay(500);
}
/* USER CODE END StartTask02 */
}

void StartTask03(void *argument)
{
/* USER CODE BEGIN StartTask03 */
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG1, osFlagsWaitAny ,

osWaitForever);
cnt = 3;
printf("timer2 \n\r");
osEventFlagsClear(myEvent01Handle , FLAG1);
osThreadYield();
}
/* USER CODE END StartTask03 */
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
else if (htim->Instance == TIM2)
{
osEventFlagsSet(myEvent01Handle , FLAG1);
}
/* USER CODE END Callback 1 */
}

We already know that an interrupt callback function must be kept as short
as possible. Therefore, we only set the event flag inside the callback function
and trigger another task to perform interrupt-related operations inside the task in
Listing 10.10. This setup can be used for all callback functions. As a side note, the
function osEventFlagsSet is interrupt-safe and can be used inside the Timer 2
callback function.
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10.4.3 Event in Mbed OS

We will handle event-related functions in Mbed OS and their usage in active projects
in this section. Let’s start with event-related functions.

10.4.3.1 Event Functions
Mbed OS has several functions related to events. The function EventFlags is used
to create and initialize the EventFlags object. The function set is used to set the
event flags. The function clear is used to clear the event flags. The function get is
used to obtain the current event flags. The functions wait_all, wait_all_for, and
wait_all_until are used to wait until all of the specified event flags are set. The
functions wait_any, wait_any_for, and wait_any_until are used to wait until
any of the specified event flags are set. Finally, the function ~EventFlags is used
to destruct the EventFlags object. The functions EventFlags, ~EventFlags,
wait_all_until, and wait_any_until cannot be used inside an interrupt call-
back function. The functions clear, get, and set can be used inside an interrupt
callback function. The remaining functions can be used inside a callback function
if their timeout value is set to zero. We provide detailed explanation of the event
functions under Mbed OS next.

EventFlags()

EventFlags(const char *name)
/*
name: name of the EventFlags.
*/

uint32_t set(uint32_t flags)
/*
flags: the flags which will be set.
*/

uint32_t clear(uint32_t flags=0x7fffffff)
/*
flags: the flags which will be cleared.
*/

uint32_t get()

uint32_t wait_all(uint32_t flags=0, uint32_t millisec=
osWaitForever , bool clear=true)

/*
flags: the flags to wait for.
millisec: timeout value.
clear: variable to clear specified event flags after waiting for

them. Event flags are cleared if it is set to true, and they
are not cleared if it is set to false.

*/

uint32_t wait_all_for(uint32_t flags, Kernel::Clock::duration_u32
rel_time , bool clear=true)

/*
rel_time: timeout value.
*/
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uint32_t wait_all_until(uint32_t flags, Kernel::Clock::time_point
abs_time , bool clear=true)

/*
abs_time: timeout value.
*/

uint32_t wait_any(uint32_t flags=0, uint32_t millisec=
osWaitForever , bool clear=true)

uint32_t wait_any_for(uint32_t flags, Kernel::Clock::duration_u32
rel_time , bool clear=true)

uint32_t wait_any_until(uint32_t flags, Kernel::Clock::time_point
abs_time , bool clear=true)

~EventFlags()

10.4.3.2 Event Usage Examples
In this section, we provide two examples on the usage of events in Mbed OS. In
the first example, given in Listing 10.11, we create an additional thread named
thread1 apart from default main thread. The priority of this thread is set to
osPriorityAboveNormal, which is higher than the priority of the default main
thread. As the code is executed, the green LED on the STM32F4 board is toggled,
the event flag is cleared and then set to FLAG2, and the string “Main Thread” is
printed by the default task every 0.5 s if event flag is FLAG1. The red LED on the
STM32F4 board is toggled, the event flag is cleared and then set to FLAG1, and the
string “thread1” is printed by thread1 every 0.5 s if the event flag is FLAG2.

Listing 10.11 The first event example in Mbed OS

#include "mbed.h"

#define FLAG1 0x01
#define FLAG2 0x10

EventFlags evt;

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1;

void thread1Fn(){
evt.set(FLAG2);
while (true) {
evt.wait_any(FLAG2,osWaitForever);
greenLED = !greenLED;
evt.clear(FLAG2);
evt.set(FLAG1);
printf("thread1\r\n");
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
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while (true) {
evt.wait_any(FLAG1,osWaitForever);
redLED = !redLED;
evt.clear(FLAG1);
evt.set(FLAG2);
printf("Main Thread\r\n");
ThisThread::sleep_for(500ms);
}
}

In Listing 10.11, the event flag is set to FLAG1 at the beginning of the function
thread1Fn. thread1 has higher priority than the default main thread. Hence,
normally thread1 must be executed first. However, both threads wait for the event
flag which is initially set to FLAG1. Hence, the default main thread is executed first.
It toggles the green LED on the STM32F4 board and sets the event flag to FLAG2.
As soon as the event flag is set to FLAG2, thread1 takes the precedence. Hence, it
is executed before the default main thread yields since it has higher priority. As a
result, the red LED on the STM32F4 board is toggled, the event flag is set to FLAG1,
the string “thread1” is printed, and then thread1 yields. Finally, the string “Main
thread” is printed, the default main thread yields, and both threads wait for 0.5 s.

In the second example, given in Listing 10.12, we reconsider the code in
Listing 10.10 now in C++ language. Normally, the function printf cannot be used
inside a callback function in Mbed OS. We can overcome this problem by using
an event and thread. The function printf is used inside the thread. This thread is
triggered by the event flag which is set by the callback function.

Listing 10.12 The second event example in Mbed OS

#include "mbed.h"

#define FLAG1 0x01

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityAboveNormal);
Thread thread2(osPriorityHigh);
Ticker ticker1;
EventFlags evt;

void thread1Fn()
{
while (true)
{
greenLED = !greenLED;
printf("thread1 \n");
ThisThread::sleep_for(500ms);
}
}

void thread2Fn()
{
while (true)
{
evt.wait_any(FLAG1, osWaitForever);
printf("ticker1\r\n");
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evt.clear(FLAG1);
}
}

void ticker1Cb()
{
evt.set(FLAG1);
}

int main()
{
thread1.start(thread1Fn);
thread2.start(thread2Fn);
ticker1.attach(&ticker1Cb, 1s);
while (true)
{
redLED = !redLED;
printf("thread2 \n");
ThisThread::sleep_for(1000ms);
}
}

10.5 Mutex and Semaphore

There should be an order among different tasks while reaching microcontroller
resources for some applications. We can use mutex (mutual exclusion) and
semaphore for this purpose. To be more specific, the mutex is a lock mechanism
used between two tasks. The semaphore can be thought as the combination of
an event and wait mechanism. It can either be used between two tasks (binary
semaphore) or more than two tasks (counting semaphore). We will consider the
mutex and semaphore in detail next.

10.5.1 MutexWorking Principles

As the name implies, mutex (mutual exclusion) makes sure that the microcontroller
resources can be reached by only one task at a time. We provide the general layout
of mutex usage in Fig. 10.8. As can be seen in this figure, the mutex is created
and one task acquires it. In other words, the task locks the mutex. Hence, only this
task can reach and control all microcontroller resources. When the task (holding the
mutex) finishes its operations, it releases (unlocks) the mutex. Hence, the next task
can acquire it. Then, it will have the sole ownership of microcontroller resources.

10.5.2 SemaphoreWorking Principles

The semaphore can be thought as the combination of an event and wait mechanism.
There are binary and counting semaphores. The binary semaphore uses a binary
token count (increased or decreased by different tasks) to control microcontroller
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Fig. 10.8 General layout of
mutex usage

resources. When the count value is one, a task can acquire the token (decrease the
count value to zero) meanwhile performs its operations. When the count value is
zero, no other task can perform an operation. In other words, there is no available
token. When the count value is incremented by one again, then the next task can
acquire the token and perform its operations. Hence, a binary control mechanism
can be formed in the same way as with mutex.

In the counting semaphore, the operation becomes more general such that more
than two tasks can be coordinated. We can explain the counting semaphore by an
example. Assume that we acquire 1000 samples from the microphone via ADC
and DMA modules. We generate an interrupt as we perform ADC conversion. We
convert each value to float form within a task (with highest priority). We apply
filtering to float values in another task (with medium priority). We form a third task
(with lowest priority) to convert the filtering result to integer form and feed it to the
headphone via DAC module. As can be seen in this setup, the three tasks should
be called in the given order for every 1000 samples acquisition. To coordinate this
operation, we can form a counting semaphore with three tokens. We initially set
the token count value to zero. Since there is no available token, all three tasks will
be in the waiting state. Whenever the ADC interrupt is generated, three tokens are
released. In other words, the token count value becomes three. Hence, each task
acquires a token based on its priority level and performs the operation assigned to
it. However, the tasks do not release the tokens. Hence, when all three operations
are finalized, the count value will be zero. As a result, the three tasks will wait for
the next ADC interrupt for available tokens. This operation goes indefinitely. From
this example, we can observe that a wisely used counting semaphore can organize
sequential task execution.

We provide general layout of counting semaphore usage in Fig. 10.9. Here, we
pick our previous example to formalize this layout. As can be seen in this figure,
at any time one task can reach microcontroller resources. The remaining tasks are
blocked since there is no available token (or the count value is zero).
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Fig. 10.9 General layout of
semaphore usage

10.5.3 Mutex and Semaphore in FreeRTOS

Since mutex and semaphore share similar properties, we handle them together under
FreeRTOS in this section. We will first consider mutex in terms of its setup, related
functions, and usage. Then, we will consider the semaphore in the same order.

10.5.3.1 Mutex Setup andMutex Functions
We can add a mutex to our FreeRTOS project in STM32CubeMX by the “Configu-
ration” part of the “FreeRTOS Mode and Configuration” section. There, we should
visit the “Mutexes” tab as in Fig. 10.10. We can observe properties of the mutex by
double-clicking on it.

As we make modifications in STM32CubeMX and save project files, the
following code segments will be added to the two sections of the “main.c” file of
the project.

/* Definitions for Mutex1 */
osMutexId_t Mutex1Handle;
const osMutexAttr_t Mutex1_attributes = {

.name = "Mutex1"
};

/* Create the mutex(es) */
/* creation of Mutex1 */
Mutex1Handle = osMutexNew(&Mutex1_attributes);

In the first section, the mutex handle osMutexId_t is created with the name
Mutex1Handle. Also, the mutex attributes structure which includes its name is
created. In the second section, the mutex is created with its handle and attributes
structure using the function osMutexNew. Mutex1Handle will be used to call the
created mutex afterward.

The functions related to mutex management in FreeRTOS can be summarized as
follows. The function osMutexNew is used to create a new mutex. The mutex must
be created after the kernel is initialized. The function osMutexGetName is used to
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Fig. 10.10 FreeRTOS mutexes tab in STM32CubeMX

obtain the name of the mutex. The function osMutexAcquire waits for the mutex
for the given timeout value. If the mutex becomes available during this time period,
then it is taken (locked). The function osMutexRelease is used to release (unlock)
the mutex. The function osMutexGetOwner is used to obtain the id of the task
which uses the mutex. The function osMutexDelete is used to delete the mutex.
None of these functions can be used inside an interrupt callback function. We next
provide detailed information about the mentioned mutex functions.

osMutexId_t osMutexNew(const osMutexAttr_t *attr)
/*
attr: pointer to the struct containing mutex attributes. Set it

to NULL in order to use default values.
*/

const char* osMutexGetName(osMutexId_t mutex_id)
/*
id: id of the mutex.
*/

osStatus_t osMutexAcquire(osMutexId_t mutex_id , uint32_t timeout)
/*
id: timeout value.
*/

osStatus_t osMutexRelease(osMutexId_t mutex_id)

osThreadId_t osMutexGetOwner(osMutexId_t mutex_id)

osStatus_t osMutexDelete(osMutexId_t mutex_id)
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10.5.3.2 Mutex Usage Examples
We next provide an example on the usage of mutex in FreeRTOS. In Listing 10.13,
we create an additional task named myTask02 apart from the default task. The prior-
ity of this task is set to osPriorityAboveNormal, which is higher than the priority
of the default task. We also have the function LEDChange(int condition), which
will turn on and off the green LED on the STM32F4 board according to the input
condition. If the condition is 0, then the green LED is turned off. Otherwise,
the green LED is turned on. The function HAL_Delay is used to halt code execution
for 1 s. In the code, the function LEDChange(int condition) is protected by the
created mutex.

Listing 10.13 The mutex example in FreeRTOS

/* USER CODE BEGIN 0 */
void LEDChange(int condition)
{
osMutexAcquire(myMutex01Handle , osWaitForever);
if (condition == 0)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
}
HAL_Delay(1000);
osMutexRelease(myMutex01Handle);
}
/* USER CODE END 0 */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
LEDChange(0);
osThreadYield();
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
/* Infinite loop */
for (;;)
{
LEDChange(1);
osDelay(500);
}
/* USER CODE END StartTask02 */
}

When the code in Listing 10.13 is executed, myTask02 is called first since it has
higher priority. This task calls the function LEDChange and the green LED is turned
on. After 1 s, myTask2 yields for 0.5 s. Then, the default task is called. Hence,
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Fig. 10.11 FreeRTOS timers and semaphores tab in STM32CubeMX

the function LEDChange is executed again and the green LED is turned off. After
0.5 s, myTask2 becomes ready and tries to preempt. However, at this time mutex has
been locked by the default task. Hence, myTask2 waits for extra 0.5 s even if it has
higher priority. myTask2 is called again when the default task releases (unlocks)
the mutex. As a result, green LED toggles every second.

10.5.3.3 Semaphore Setup and Semaphore Functions
We can add a semaphore to our FreeRTOS project under STM32CubeMX by the
“Configuration” part of the “FreeRTOS Mode and Configuration” section. There,
we should visit the “Timers and Semaphores” tab as in Fig. 10.11. Here, we can
choose either a binary or counting semaphore. Without loss of generality, we will
continue with binary semaphore usage from this point on.

As we make modifications in STM32CubeMX and save the project files, the
following code segments will be added to the two sections of the “main.c” file of
the project.

/* Definitions for BinarySem1 */
osSemaphoreId_t BinarySem1Handle;
const osSemaphoreAttr_t BinarySem1_attributes = {
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.name = "BinarySem1"
};

/* Create the semaphores(s) */
/* creation of BinarySem1 */
BinarySem1Handle = osSemaphoreNew(1, 1, &BinarySem1_attributes)

;

In the first section, the semaphore handle osSemaphoreId_t is created with the
name BinarySem1Handle. The semaphore attributes struct osSemaphoreAttr_t
is also created with the name BinarySem1. In the second section, the binary
semaphore is created with its handle and attributes structure using the function
osSemaphoreNew. BinarySem1Handle will be used to call the created binary
semaphore afterward.

The functions related to semaphore management in FreeRTOS can be summa-
rized as follows. The function osSemaphoreNew is used to create a new semaphore
with initial and maximum number of tokens. The semaphore must be created
after the kernel is initialized. The function osSemaphoreGetName is used to
obtain the name of the semaphore. The function osSemaphoreAcquire is used
to wait until any token becomes available. If a token becomes available, it is
taken, and token count is decreased by one. The function osSemaphoreRelease
is used to release the token and token count is increased by one. The function
osSemaphoreGetCount is used to obtain the number of available tokens. The
function osSemaphoreDelete is used to delete the semaphore. The functions
osSemaphoreNew, osSemaphoreGetName, and osSemaphoreDelete cannot be
used inside an interrupt callback function. The functions osSemaphoreRelease
and osSemaphoreGetCount can be used inside interrupt callback functions. The
function osSemaphoreAcquire can be used inside an interrupt callback function
if its timeout value is set to zero. We next provide detailed information about the
mentioned semaphore functions.

osSemaphoreId_t osSemaphoreNew(uint32_t max_count , uint32_t
initial_count , const osSemaphoreAttr_t *attr)

/*
max_count: maximum number of semaphore tokens.
initial_count: initial number of available semaphore tokens.
attr: pointer to the struct containing semaphore attributes. Set

it to NULL in order to use default values..
*/

const char* osSemaphoreGetName(osSemaphoreId_t semaphore_id)
/*
id: id of the semaphore.
*/

osStatus_t osSemaphoreAcquire(osSemaphoreId_t semaphore_id ,
uint32_t timeout)

/*
timeout: timeout value.
*/

osStatus_t osSemaphoreRelease(osSemaphoreId_t semaphore_id)

uint32_t osSemaphoreGetCount(osSemaphoreId_t semaphore_id)

osStatus_t osSemaphoreDelete(osSemaphoreId_t semaphore_id)
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10.5.3.4 Semaphore Usage Examples
In this section, we provide two examples on the usage of semaphores in FreeRTOS.
In the first example, given in Listing 10.14, we repeat the code in Listing 10.13 now
using a binary semaphore. When the code is executed, myTask02 is called first since
it has higher priority. This task calls the function LEDChange and the green LED on
the STM32F4 board is turned on. After one second, myTask2 yields for 0.5 s. Then,
the default task is called. This task calls the function LEDChange and the green LED
is turned off. After 0.5 s, myTask2 becomes ready and tries to preempt. However,
the binary semaphore token has been acquired by the default task. Hence, myTask2
waits for extra 0.5 s even if it has higher priority. myTask2 is executed again when
the default task releases the binary semaphore token. As a result, green LED toggles
every second.

Listing 10.14 The first semaphore example in FreeRTOS

/* USER CODE BEGIN 0 */
void LEDChange(int condition)
{
osSemaphoreAcquire(myBinarySem01Handle , osWaitForever);
if (condition == 0)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
}
else
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
}
HAL_Delay(1000);
osSemaphoreRelease(myBinarySem01Handle);
}
/* USER CODE END 0 */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
LEDChange(0);
osThreadYield();
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
/* Infinite loop */
for (;;)
{
LEDChange(1);
osDelay(500);
}
/* USER CODE END StartTask02 */
}
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In the second example, given in Listing 10.15, we benefit from the counting
semaphore to control three tasks with different priorities. myTask03 has the highest
priority and fills the array arr (with 10 elements) from 0 to 9. myTask02 has
the second highest priority and it multiplies each element of the array arr by
5. Finally, the default task has the lowest priority and it prints the elements of
array arr. Each task waits for a semaphore token. Therefore, we set the period
of Timer 2 to 1 s to generate an interrupt. Three semaphore tokens are released by
the Timer 2 callback function. Hence, every time an interrupt is generated by Timer
2, myTask03, myTask02, and the default task are called based on their priority. To
note here, the semaphore number is initially reset by the function osSemaphoreNew.
Therefore, no operation is done unless the timer interrupt comes. We should modify
ITM properties as explained in Sect. 3.4.1.1 to observe printing results in this
example.

Listing 10.15 The second semaphore example in FreeRTOS

/* USER CODE BEGIN PV */
uint32_t cnt = 0;
uint32_t arr[10];
uint32_t i;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE END 2 */

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for (;;)
{
osSemaphoreAcquire(myCountingSem01Handle , osWaitForever);
for (i = 0; i < 10; i++)
{
cnt = arr[i];
printf("%u \n", cnt);
}
osDelay(100);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
/* Infinite loop */
for (;;)
{
osSemaphoreAcquire(myCountingSem01Handle , osWaitForever);
for (i = 0; i < 10; i++)
{
arr[i] = arr[i] * 5;
}
osDelay(100);
}
/* USER CODE END StartTask02 */
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}

void StartTask03(void *argument)
{
/* USER CODE BEGIN StartTask03 */
/* Infinite loop */
for (;;)
{
osSemaphoreAcquire(myCountingSem01Handle , osWaitForever);
for (i = 0; i < 10; i++)
{
arr[i] = i;
}
osDelay(100);
}
/* USER CODE END StartTask03 */
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
if (htim->Instance == TIM6)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
else if (htim->Instance == TIM2)
{
osSemaphoreRelease(myCountingSem01Handle);
osSemaphoreRelease(myCountingSem01Handle);
osSemaphoreRelease(myCountingSem01Handle);
}
/* USER CODE END Callback 1 */
}

10.5.4 Mutex and Semaphore in Mbed OS

We can handle the mutex and semaphore in Mbed OS in the same way as in
FreeRTOS. Hence, we start with mutex followed by semaphore.

10.5.4.1 Mutex Functions
Mbed OS has several functions related to mutex usage. The functions Mutex and
Mutex(const char *name) are used to create and initialize the mutex object with
a default or given name, respectively. The function lock is used to wait a task until
the mutex is available. The function trylock is used to try to acquire the mutex and
return immediately if it is not available. The function trylock_for is used to try
to acquire the mutex in a given timeout value and return if it is not available after
timeout. The function trylock_until is used to try to acquire the mutex until the
given absolute time is reached and return if it is not available after this time. The
function unlock is used to release the mutex. Finally, the function ~Mutex is used
to destruct the mutex object. None of these functions can be used inside an interrupt
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callback function. We provide the detailed explanation for the mentioned mutex
functions next.

Mutex()

Mutex(const char *name)
/*
name: name of the mutex.
*/

void lock()

bool trylock()

bool trylock_for(Kernel::Clock::duration_u32 rel_time)
/*
rel_time: timeout value.
*/

bool trylock_until(Kernel::Clock::time_point abs_time)
/*
abs_time: absolute timeout time.
*/

void unlock()

osThreadId_t get_owner()

~Mutex()

10.5.4.2 Mutex Usage Examples
We next provide an example on the usage of mutex in Mbed OS. In Listing 10.16,
we reconstruct the code in Listing 10.13 now in C++ language. Here, both thread1
and default main threads use the function LEDChange with different inputs. The
operation is controlled by the created mutex.

Listing 10.16 The mutex example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);

Thread thread1(osPriorityAboveNormal);
Mutex mutex;

void LEDChange(int condition)
{
mutex.lock();
if (condition == 0)
{
greenLED = 0;
}
else
{
greenLED = 1;
}
wait_us(1000000);
mutex.unlock();
}
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void thread1Fn()
{
while (true)
{
LEDChange(1);
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
while (true)
{
LEDChange(0);
}
}

10.5.4.3 Semaphore Functions
Mbed OS has several functions related to semaphore usage. The functions
Semaphore(int32_t count=0) and Semaphore(int32_t count, uint16_t
max_count) can be used to create and initialize the semaphore object with initial
number of tokens or initial and maximum number of tokens, respectively. The
function acquire is used to wait until a semaphore token is available. The function
try_acquire is used to try to acquire a semaphore token and return immediately
if no token is available. The function try_acquire_for is used to try to acquire
a semaphore in a given timeout value and return if no token is available after
timeout. The function try_acquire_until is used to try to acquire a semaphore
until given absolute time is reached and return if no token is available after this
time. The function release is used to release the semaphore token. Finally, the
function ~Semaphore is used to destruct the semaphore object. The functions
Semaphore, ~Semaphore, acquire, and try_acquire_until cannot be used
inside an interrupt callback function. The functions release and try_acquire
can be used inside the interrupt callback function. The function try_acquire_for
can be used inside interrupt callback functions if its timeout value is set to zero. We
provide detailed explanation of the mentioned semaphore functions next.

Semaphore(int32_t count=0)
/*
count: initial number of semaphore tokens.
*/

Semaphore(int32_t count, uint16_t max_count)
/*
max_count: maximum number of semaphore tokens.
*/

void acquire()

bool try_acquire()

bool try_acquire_for(Kernel::Clock::duration_u32 rel_time)
/*
rel_time: timeout value.
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*/

bool try_acquire_until(Kernel::Clock::time_point abs_time)
/*
abs_time: absolute timeout time.
*/

osStatus release(void)

~Semaphore()

10.5.4.4 Semaphore Usage Examples
In this section, we provide two examples on the usage of semaphores in Mbed OS. In
the first example, given in Listing 10.17, we reconstruct the C code in Listing 10.14
now in C++ language. Here, both thread1 and the default main threads use the
function LEDChange with different inputs. Management of the operation is done by
the created binary semaphore.

Listing 10.17 The first semaphore example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);

Thread thread1(osPriorityAboveNormal);
Semaphore oneSlot(1);

void LEDChange(int condition){
oneSlot.acquire();
if(condition == 0){
greenLED = 0;
}
else {
greenLED = 1;
}
wait_us(1000000);
oneSlot.release();
}

void thread1Fn(){
while (true) {
LEDChange(1);
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
while (true){
LEDChange(0);
}
}

In the second example, given in Listing 10.18, we reconstruct the C code in
Listing 10.15 now in C++ language. Here, we use a semaphore with three tokens.
The Ticker1 is used to release these tokens every second. After tokens are released,
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thread1, thread2, and the default main threads are called according to their
priorities.

Listing 10.18 The second semaphore example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);

Thread thread1(osPriorityAboveNormal);
Thread thread2(osPriorityHigh);
Semaphore threeSlot(0, 3);
Ticker ticker1;

uint32_t arr[10];
uint32_t i;

void thread1Fn()
{
while (true)
{
threeSlot.acquire();
for (i = 0; i < 10; i++)
{
arr[i] = arr[i] * 5;
}
ThisThread::sleep_for(100ms);
}
}

void thread2Fn()
{
while (true)
{
threeSlot.acquire();
for (i = 0; i < 10; i++)
{
arr[i] = i;
}
ThisThread::sleep_for(100ms);
}
}

void ticker1Cb()
{
threeSlot.release();
threeSlot.release();
threeSlot.release();
}

int main()
{
thread1.start(thread1Fn);
thread2.start(thread2Fn);
ticker1.attach(&ticker1Cb, 1s);
while (true)
{
threeSlot.acquire();
for (i = 0; i < 10; i++)
{
printf("%u \n", arr[i]);
}
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ThisThread::sleep_for(100ms);
}
}

10.6 Queue andMail

Sometimes we may want to transfer data between tasks. This can be done by either
queue or mail usage. To be more specific, we can use queue to transfer data (one
variable, pointer to an array or struct) between tasks. On the other hand, mail is the
specialized form of queue such that both queue and memory allocation (via memory
pool) are used together. Therefore, FreeRTOS does not directly call this operation
as mail. Instead, it calls this operation as the joint queue and memory pool usage.

10.6.1 QueueWorking Principles

We can transfer data (in the form of single variable) between two tasks by using
a queue. Here, one task adds variable to the queue; the other task receives it. The
size of the queue can be adjusted. Hence, data with more than one element can be
transferred between the tasks in synchronous manner.

We provide general layout of queue usage in Fig. 10.12. As can be seen in this
figure, one task adds data to the queue if there is an available slot. Here, the priority
is also taken into account such that if more than one task tries to add data to the
queue at the same time, the task with higher priority adds the data first. If there is
data in the queue, then the task with higher priority gets it. During this process, the
data is passed from one task to other in the first in, first out (FIFO) order.

10.6.2 Mail Working Principles

Mail can also be used to transfer data between tasks. Different from the queue, mail
can be used to transfer a fixed-sized memory block instead of a single variable. As
the transfer ends, this memory block is released. The memory pool is used to create

Fig. 10.12 General layout of queue usage
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Fig. 10.13 General layout of mail usage

the fixed-sized memory block. Here, only the pointer for the allocated memory block
is transferred.

We provide general layout of mail usage in Fig. 10.13. As can be seen in this
figure, we have memory blocks in operation. Hence, large or structured data can
be transferred between tasks. Here, one task allocates a memory block from the
memory pool, adds data to this memory block, and puts the pointer of this memory
block into the mail (or queue). Then, another task gets the pointer of the memory
block from the mail (or queue), obtains data using this pointer, and releases the
allocated memory block.

10.6.3 Queue andMemory Pool in FreeRTOS

In FreeRTOS, queue is used as such. However, mail is formed by jointly using the
queue and memory pool. Therefore, some sources call this operation as memory
queue. Next, we start with queue operations.

10.6.3.1 Queue Setup and Queue Functions
We can add a queue to our FreeRTOS project in STM32CubeMX by the “Configu-
ration” part of the “FreeRTOS Mode and Configuration” section. There, we should
visit the “Tasks and Queues” tab as in Fig. 10.14.

As we make modifications in STM32CubeMX and save project files, the
following code segments will be added to the two sections of the “main.c” file of
the project.

/* Definitions for Queue1 */
osMessageQueueId_t Queue1Handle;
const osMessageQueueAttr_t Queue1_attributes = {

.name = "Queue1"
};
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Fig. 10.14 FreeRTOS tasks and queues tab in STM32CubeMX

/* Create the queue(s) */
/* creation of Queue1 */
Queue1Handle = osMessageQueueNew (1, sizeof(uint16_t), &

Queue1_attributes);

In the first section, queue handle osMessageQueueId_t is created with the
name Queue1Handle. Also, the queue attributes struct osMessageQueueAttr_t
is created with the name Queue1. In the second section, the queue is created
with its handle and attributes structure using the function osMessageQueueNew.
Queue1Handle will be used to call the created queue afterward.

The functions related to queue management in FreeRTOS can be summarized
as follows. The function osMessageQueueNew is used to create a new queue
with maximum number of slots in the queue and maximum slot data size in
bytes. The queue must be created after the kernel is initialized. The function
osMessageQueueGetName is used to obtain the name of the queue. The
function osMessageQueuePut is used to insert data pointed by given pointer
to the queue. Here, priority of the input is used to sort the incoming data on
insertion. This function waits until the given timeout value is expired. The
function osMessageQueueGet is used to retrieve data from the queue and
store it to the location pointed by given pointer. This function waits until the
given timeout value is expired. The function osMessageQueueGetCapacity
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is used to obtain the number of maximum slots in the queue. The function
osMessageQueueGetMsgSize is used to obtain the maximum slot data size in
bytes. The function osMessageQueueGetCount is used to obtain the number of
filled slots in the queue. The function osMessageQueueGetSpace is used to obtain
the number of available slots in the queue. The function osMessageQueueReset
is used to reset the queue. The function osMessageQueueDelete is used to
delete the queue. Except osMessageQueueNew, osMessageQueueGetName,
osMessageQueueReset, and osMessageQueueDelete, the remaining functions
can be used inside an interrupt callback function. We next provide detailed
information on the usage of the mentioned queue functions.

osMessageQueueId_t osMessageQueueNew(uint32_t msg_count, uint32_t
msg_size , const osMessageQueueAttr_t *attr)

/*
msg_count: maximum number of messages in queue.
msg_size: maximum message size in bytes.
attr: pointer to the struct containing queue attributes. Set it

to NULL in order to use default values.
*/

const char* osMessageQueueGetName(osMessageQueueId_t mq_id)
/*
mq_id: id of the message queue.
*/

osStatus_t osMessageQueuePut(osMessageQueueId_t mq_id, const void
*msg_ptr, uint8_t msg_prio , uint32_t timeout)

/*
msg_ptr: pointer to the message which will be inserted into queue

.
msg_prio: message priority.
timeout: timeout value.
*/

osStatus_t osMessageQueueGet(osMessageQueueId_t mq_id, void *
msg_ptr, uint8_t *msg_prio , uint32_t timeout)

uint32_t osMessageQueueGetCapacity(osMessageQueueId_t mq_id)

uint32_t osMessageQueueGetMsgSize(osMessageQueueId_t mq_id)

uint32_t osMessageQueueGetCount(osMessageQueueId_t mq_id)

uint32_t osMessageQueueGetSpace(osMessageQueueId_t mq_id)

osStatus_t osMessageQueueReset(osMessageQueueId_t mq_id)

osStatus_t osMessageQueueDelete(osMessageQueueId_t mq_id)

10.6.3.2 Queue Usage Examples
In this section, we provide two examples on the usage of queue in FreeRTOS. In the
first example, given in Listing 10.19, we transfer a variable between two tasks using
a queue. Here, we create an additional task named myTask02 apart from the default
task. The priority of this task is set to osPriorityNormal, which is same as the
priority of the default task. Then, we create a queue named myQueue01 with size
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one and slot size of uint16_t. As the code is executed, the default task increases
the variable i by 1 and checks whether the value is odd or even. If the value is odd,
the task puts the value 1 to the queue. Otherwise, the task puts the value 0 to the
queue. Then, the default task yields for 0.5 s. myTask02 is kept in the waiting state
until this operation ends. Then, it is called and the queue entry is read. If the read
value is 0, the green LED on the STM32F4 board is toggled by myTask02. If the
read value is 1, the red LED on the STM32F4 board is toggled by myTask02.

Listing 10.19 The first queue example in FreeRTOS

/* Private variables
---------------------------------------------------------*/

/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.priority = (osPriority_t)osPriorityNormal ,
.stack_size = 128 * 4};

/* Definitions for Task2 */
osThreadId_t myTask02Handle;
const osThreadAttr_t myTask02_attributes = {
.name = "myTask02",
.stack_size = 128 * 4,
.priority = (osPriority_t)osPriorityNormal ,
};

/* Definitions for myQueue01 */
osMessageQueueId_t myQueue01Handle;
const osMessageQueueAttr_t myQueue01_attributes = {
.name = "myQueue01"};

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
uint16_t i = 0;
uint16_t message;
/* Infinite loop */
for (;;)
{
i++;
i %= 2;
message = i;
osMessageQueuePut(myQueue01Handle , &message, osPriorityNormal ,

osWaitForever);
osDelay(500);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
uint16_t message;
/* Infinite loop */
for (;;)
{
osMessageQueueGet(myQueue01Handle , &message, NULL, osWaitForever)

;
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if (message == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
else if (message == 1)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
}
/* USER CODE END StartTask02 */
}

In the second example, given in Listing 10.20, we show how queue can be used
with interrupts and multiple tasks. Here, we configure the timer modules Timer
2 and Timer 3 to trigger interrupts every 1 s and 2 s, respectively. Both timers
have their own counter and put a message containing the counter value and timer
id to the queue whenever the related interrupt is triggered. At the same time, the
default task waits until a message is put in the queue. It then prints the counter
value and id of the timer which holds this counter value. In this setup, we do not
want to miss any printing. However, priorities of timer interrupts are always higher
than task priorities. Hence, we create two more tasks as myTask02 and myTask03
with priorities lower than the default task and associate them with Timer 2 and
Timer 3 using an event. Therefore, whenever a timer interrupt is triggered, the
associated task is called. The counter is increased and message is put to the queue.
The default task prints content of the incoming message. It toggles the green LED
on the STM32F4 board if the message originated from Timer 2. It toggles the red
LED on the STM32F4 board if the message originated from Timer 3. We should
modify ITM properties as explained in Sect. 3.4.1.1 to observe printing results in
this example.

Listing 10.20 The second queue example in FreeRTOS

/* USER CODE BEGIN PV */
typedef struct
{
uint32_t cnt;
uint8_t id;
} message_t;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
if (__HAL_TIM_GET_FLAG(&htim2, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim2, TIM_FLAG_UPDATE);
if (__HAL_TIM_GET_FLAG(&htim3, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim3, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_Base_Start_IT(&htim3);
/* USER CODE END 2 */

/* creation of myQueue01 */
myQueue01Handle = osMessageQueueNew (16, sizeof(message_t), &

myQueue01_attributes);

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
message_t message;
/* Infinite loop */
for (;;)
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{
osMessageQueueGet(myQueue01Handle , &message, NULL, osWaitForever)

;
if (message.id == 2)
{
printf("TIM2 cnt = %u \r\n", message.cnt);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
}
else if (message.id == 3)
{
printf("TIM3 cnt = %u \r\n", message.cnt);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
}
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
uint32_t cnt1 = 0;
message_t message1;
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG1, osFlagsWaitAny ,

osWaitForever);
message1.cnt = cnt1;
message1.id = 2;
osMessageQueuePut(myQueue01Handle , &message1 , osPriorityNormal ,

osWaitForever);
cnt1++;
osEventFlagsClear(myEvent01Handle , FLAG1);
}
/* USER CODE END StartTask02 */
}

void StartTask03(void *argument)
{
/* USER CODE BEGIN StartTask03 */
uint32_t cnt2 = 0;
message_t message2;
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG2, osFlagsWaitAny ,

osWaitForever);
message2.cnt = cnt2;
message2.id = 3;
osMessageQueuePut(myQueue01Handle , &message2 , osPriorityNormal ,

osWaitForever);
cnt2++;
osEventFlagsClear(myEvent01Handle , FLAG2);
}
/* USER CODE END StartTask03 */
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
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HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
else if (htim->Instance == TIM2)
{
osEventFlagsSet(myEvent01Handle , FLAG1);
}
else if (htim->Instance == TIM3)
{
osEventFlagsSet(myEvent01Handle , FLAG2);
}
/* USER CODE END Callback 1 */
}

10.6.3.3 Memory Pool Setup andMemory Pool Functions
There is no memory pool section under STM32CubeMX. Hence, we cannot directly
add a memory pool to our FreeRTOS project using STM32CubeMX. Instead, we
should add the memory pool via code. Creation of a memory pool handle and its
attributes structure can be seen in the first section of the code snippet given below. In
the second section, memory pool is created with its handle and attributes structure
using the function osMemoryPoolNew. MemoryPool1Handle will be used to call
the created memory pool afterward.

/* Definitions for Queue1 */
osMemoryPoolId_t MemoryPool1Handle;
const osMemoryPoolAttr_t MemoryPool1_attributes = {

.name = "MemoryPool1"
};

/* creation of MemoryPool1 */
MemoryPool1Handle = osMemoryPoolNew(10, sizeof(uint16_t), &

MemoryPool1_attributes);

Functions related to memory pool management in FreeRTOS are as follows.
The function osMemoryPoolNew is used to create new memory pool with max-
imum number of memory blocks in memory pool and memory block size in
bytes. The memory pool must be created after the kernel is initialized. The
function osMemoryPoolGetName is used to obtain the name of the memory
pool. The function osMemoryPoolAlloc is used to allocate memory block under
the memory pool and returns a pointer to the address of the allocated memory
block. This function waits for allocation until the given timeout value is expired.
The function osMemoryPoolFree is used to free the memory block pointed
by given pointer. The function osMemoryPoolGetCapacity is used to obtain
the maximum number of memory blocks in the memory pool. The function
osMemoryPoolGetBlockSize is used to obtain memory block size in bytes.
The function osMemoryPoolGetCount is used to obtain the number of used
memory blocks. The function osMemoryPoolGetSpace is used to obtain the
number of available memory blocks. The function osMemoryPoolDelete is used
to delete the memory pool. Except osMemoryPoolNew, osMemoryPoolGetName,
and osMemoryPoolDelete, the remaining functions can be used inside an interrupt
callback function. We next provide detailed information on the mentioned memory
pool functions.



10.6 Queue and Mail 391

osMemoryPoolId_t osMemoryPoolNew(uint32_t block_count , uint32_t
block_size , const osMemoryPoolAttr_t *attr)

/*
block_count: maximum number of memory blocks in memory pool.
block_size: memory block size in bytes.
attr: pointer to the struct containing memory pool attributes.

Set it to NULL in order to use default values.
*/

const char* osMemoryPoolGetName(osMemoryPoolId_t mp_id)
/*
mp_id: id of the memory pool
*/

void* osMemoryPoolAlloc(osMemoryPoolId_t mp_id, uint32_t timeout)
/*
timeout: timeout value
*/

osStatus_t osMemoryPoolFree(osMemoryPoolId_t mp_id, void *block)
/*
block: address of the allocated memory block to be returned to

the memory pool.
*/

uint32_t osMemoryPoolGetCapacity(osMemoryPoolId_t mp_id)

uint32_t osMemoryPoolGetBlockSize(osMemoryPoolId_t mp_id)

uint32_t osMemoryPoolGetCount(osMemoryPoolId_t mp_id)

uint32_t osMemoryPoolGetSpace(osMemoryPoolId_t mp_id)

osStatus_t osMemoryPoolDelete(osMemoryPoolId_t mp_id)

10.6.3.4 Memory Pool Usage Examples
In this section, we provide two examples on the usage of queue and memory pool
in FreeRTOS. In the first example, given in Listing 10.21, we transfer a struct
containing uint16_t buffer array with ten elements and id between two tasks
using memory pool and queue. Here, we create an additional task named myTask02
apart from the default task. The priority of this task is set to osPriorityHigh,
which is higher than the priority of the default task. Then, we create a queue with
size one. Data in the queue has the size of constructed structure. The memory pool
is initialized at the beginning of the function StartTask02 with ten elements and
data size of constructed structure. A variable cnt is increased inside the function
StartTask02. Each time the function StartTask02 is called, a memory block is
allocated from the memory pool. The value of cnt is written to the first element
of the uint16_t buffer array. Then, data is added to the queue. Afterward,
myTask02 yields for 0.5 s. The default task will be in the waiting state until data
is added to the queue. Then, it resumes its operation and gets data from the queue.
If the first element of the received buffer array is even, the green LED on the
STM32F4 board is toggled in the function StartDefaultTask. If the first element
of the received buffer array is odd, the red LED on the STM32F4 board is toggled
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in the function StartDefaultTask. Then, the allocated memory block is freed and
returned to the memory pool.

Listing 10.21 The first memory pool example in FreeRTOS

/* Private variables
---------------------------------------------------------*/

/* Definitions for defaultTask */
osThreadId_t defaultTaskHandle;
const osThreadAttr_t defaultTask_attributes = {
.name = "defaultTask",
.stack_size = 128 * 4,
.priority = (osPriority_t)osPriorityNormal ,
};

/* Definitions for myTask02 */
osThreadId_t myTask02Handle;
const osThreadAttr_t myTask02_attributes = {
.name = "myTask02",
.stack_size = 128 * 4,
.priority = (osPriority_t)osPriorityHigh ,
};

/* Definitions for myQueue01 */
osMessageQueueId_t myQueue01Handle;
const osMessageQueueAttr_t myQueue01_attributes = {
.name = "myQueue01"};

/* USER CODE BEGIN PV */
typedef struct
{
uint16_t buffer[10];
uint8_t id;
} message_t;

osMemoryPoolId_t myMemPool01;
/* USER CODE END PV */

myQueue01Handle = osMessageQueueNew(1, sizeof(message_t), &
myQueue01_attributes);

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
message_t *message;
/* Infinite loop */
for (;;)
{
osMessageQueueGet(myQueue01Handle , &message, NULL, osWaitForever)

;
if (((message->buffer[0]) % 2) == 0)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);
else if (((message->buffer[0]) % 2) == 1)
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);
osMemoryPoolFree(myMemPool01 , message);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */
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myMemPool01 = osMemoryPoolNew(10, sizeof(message_t), NULL);
message_t *message;
uint16_t cnt = 0;
/* Infinite loop */
for (;;)
{
message = (message_t *)osMemoryPoolAlloc(myMemPool01 , 0U);
message->buffer[0] = cnt;
osMessageQueuePut(myQueue01Handle , &message, 0U, 0U);
cnt++;
osDelay(500);
}
/* USER CODE END StartTask02 */
}

In the second example, given in Listing 10.22, we show how memory pool and
queue can be used with interrupts and multiple tasks. To do so, we use the same
structure introduced in the previous example. Now, we create a queue with size
two. Data in the queue slots have the size of the constructed structure. The memory
pool is initialized at the beginning of the function StartDefaultTask with ten
elements and data size of the constructed structure. We configure the timer modules
Timer 2 and Timer 3 to trigger interrupts every 1 s and 2 s, respectively. Both timers
have their own counter and put data containing the counter value and timer id to
the queue whenever related interrupt is triggered. At the same time, the default task
waits until data is put to the queue. It then prints the counter value and id of the
timer which holds this counter value. As in Listing 10.20, we do not want to miss
any printing. However, priorities of timer interrupts are always higher than priority
of a task. Hence, we create two more tasks named myTask02 and myTask03 with
priorities lower than the default task. We associate them with Timer 2 and Timer 3
respectively using an event. Therefore, whenever a timer interrupt is triggered, the
related task is called. Then, the memory block is allocated from the memory pool.
The counter value is written to the first element of the buffer array and the id is
set according to the timer interrupt source. Afterward, the message is added to the
queue. The default task will be waiting for the message to be added to the queue.
Afterward, it receives the message. If the id in the incoming message is 2, then the
string “TIM2 cnt = ” is printed with the cnt value in the message. The green LED
on the STM32F4 board is toggled. If the id in the incoming message is 3, then the
string “TIM3 cnt = ” is printed with the cnt value in the message. The red LED
on the STM32F4 board is toggled. Then, the allocated memory block is freed and
returned to the memory pool. We should modify ITM properties as explained in
Sect. 3.4.1.1 to observe printing results in this example.

Listing 10.22 The second memory pool example in FreeRTOS

/* USER CODE BEGIN PV */
typedef struct
{
uint16_t buffer[10];
uint8_t id;
} message_t;

osMemoryPoolId_t myMemPool01;
/* USER CODE END PV */
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/* USER CODE BEGIN 2 */
if (__HAL_TIM_GET_FLAG(&htim2, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim2, TIM_FLAG_UPDATE);
if (__HAL_TIM_GET_FLAG(&htim3, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim3, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_Base_Start_IT(&htim3);
/* USER CODE END 2 */

/* creation of myQueue01 */
myQueue01Handle = osMessageQueueNew (16, sizeof(message_t), &

myQueue01_attributes);

void StartDefaultTask(void *argument)
{
/* USER CODE BEGIN 5 */
myMemPool01 = osMemoryPoolNew(10, sizeof(message_t), NULL);
message_t *message;
/* Infinite loop */
for (;;)
{
osMessageQueueGet(myQueue01Handle , &message, NULL, osWaitForever)

;
if (message->id == 2)
{

printf("TIM2 cnt = %u \r\n", message->buffer[0]);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_13);

}
else if (message->id == 3)
{

printf("TIM3 cnt = %u \r\n", message->buffer[0]);
HAL_GPIO_TogglePin(GPIOG, GPIO_PIN_14);

}
osMemoryPoolFree(myMemPool01 , message);
}
/* USER CODE END 5 */
}

void StartTask02(void *argument)
{
/* USER CODE BEGIN StartTask02 */

uint16_t cnt1 = 0;
message_t *message;
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG1, osFlagsWaitAny ,

osWaitForever);
message = (message_t *)osMemoryPoolAlloc(myMemPool01 , 0U);
message->buffer[0] = cnt1;
message->id = 2;
osMessageQueuePut(myQueue01Handle , &message, osPriorityNormal ,

osWaitForever);
cnt1++;
osEventFlagsClear(myEvent01Handle , FLAG1);
}
/* USER CODE END StartTask02 */
}

void StartTask03(void *argument)
{
/* USER CODE BEGIN StartTask03 */
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uint16_t cnt2 = 0;
message_t *message;
/* Infinite loop */
for (;;)
{
osEventFlagsWait(myEvent01Handle , FLAG2, osFlagsWaitAny ,

osWaitForever);
message = (message_t *)osMemoryPoolAlloc(myMemPool01 , 0U);
message->buffer[0] = cnt2;
message->id = 3;
osMessageQueuePut(myQueue01Handle , &message, osPriorityNormal ,

osWaitForever);
cnt2++;
osEventFlagsClear(myEvent01Handle , FLAG2);
}
/* USER CODE END StartTask03 */
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */

/* USER CODE END Callback 0 */
if (htim->Instance == TIM6) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
else if (htim->Instance == TIM2)
{
osEventFlagsSet(myEvent01Handle , FLAG1);
}
else if (htim->Instance == TIM3)
{
osEventFlagsSet(myEvent01Handle , FLAG2);
}
/* USER CODE END Callback 1 */
}

10.6.4 Queue andMail in Mbed OS

We can use queue and mail in Mbed OS. We handle them next.

10.6.4.1 Queue Functions
Mbed OS has several functions related to queue usage. The function Queue is
used to create and initialize the queue object. The function empty is used to check
whether the queue is empty. The function full is used to check whether the queue
is full. The function count is used to obtain the number of available slots in the
queue. The function try_put is used to put data pointed by the given pointer to the
queue. Here, priority of the input is used to sort the incoming data on insertion. This
function returns immediately if the queue is full. The function try_put_for is used
in the same way as the function try_put. However, it waits until the timeout value
is expired. The function try_get is used to retrieve data from the queue and store
it to the location pointed by the given pointer. This function returns immediately



396 10 Real-Time Operating Systems

if the queue is empty. The function try_get_for is used in the same way as the
function try_get. However, it waits until the timeout value is expired. Finally, the
function ~Queue is used to destruct the queue object. Except Queue and ~Queue,
the remaining functions can be used inside an interrupt callback function. As a side
note, the functions try_put_for and try_get_for can be used inside interrupt
callback functions only if their timeout value is set to zero. We next provide detailed
information on the usage of the mentioned queue functions in Mbed OS.

Queue()

bool empty()

bool full()

uint32_t count()

bool try_put(T *data, uint8_t prio=0)
/*
data: pointer to the element which will be inserted to the queue.
prio: priority of the operation.
*/

bool try_put_for(Kernel::Clock::duration_u32 rel_time , T *data,
uint8_t prio=0)

/*
rel_time: timeout value.
*/

bool try_get(T **data_out)
/*
data_out: pointer to memory address which retrieved element will

be written.
*/

bool try_get_for(Kernel::Clock::duration_u32 rel_time , T **
data_out)

~Queue()

10.6.4.2 Queue Usage Examples
We next provide two examples on the usage of queue in Mbed OS. In the first
example, given in Listing 10.23, we reform the C code in Listing 10.19 now in
C++ language. Here, we cannot use the macro osWaitForever inside the function
try_get_for to wait indefinitely. Therefore, we use 0xFFFFFFFFs which is the
value for this macro. We add s as a suffix to the hexadecimal number to indicate its
unit is seconds.

Listing 10.23 The first queue example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityNormal);
Queue<uint16_t , 1> queue;
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void thread1Fn()
{
uint16_t *message;
while (true)
{
queue.try_get_for(0xFFFFFFFFs , &message);
if (*message == 0)
greenLED = !greenLED;
else if (*message == 1)
redLED = !redLED;
}
}

int main()
{
thread1.start(thread1Fn);
uint16_t i = 0;
uint16_t message;
while (true)
{
i++;
i %= 2;
message = i;
queue.try_put(&message);
ThisThread::sleep_for(500ms);
}
}

In the second example, given in Listing 10.24, we reform the C code in
Listing 10.20 now in C++ language. The reader can consult the FreeRTOS version
of this example to grasp the structure there.

Listing 10.24 The second queue example in Mbed OS

#include "mbed.h"

#define FLAG1 0x01
#define FLAG2 0x10

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityLow);
Thread thread2(osPriorityLow);
Ticker ticker1;
Ticker ticker2;
EventFlags evt;

typedef struct
{
uint32_t cnt;
uint8_t id;
} message_t;

Queue<message_t , 16> queue;

void thread1Fn()
{
uint32_t cnt1 = 0;
message_t message1;
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while (true)
{
evt.wait_any(FLAG1, osWaitForever);
message1.cnt = cnt1;
message1.id = 2;
queue.try_put(&message1);
cnt1++;
evt.clear(FLAG1);
}
}

void thread2Fn()
{
uint32_t cnt2 = 0;
message_t message2;
while (true)
{
evt.wait_any(FLAG2, osWaitForever);
message2.cnt = cnt2;
message2.id = 3;
queue.try_put(&message2);
cnt2++;
evt.clear(FLAG2);
}
}

void ticker1Cb()
{
evt.set(FLAG1);
}

void ticker2Cb()
{
evt.set(FLAG2);
}

int main()
{
thread1.start(thread1Fn);
thread2.start(thread2Fn);
ticker1.attach(&ticker1Cb, 1s);
ticker2.attach(&ticker2Cb, 2s);
message_t *message;
while (true)
{
queue.try_get_for(0xFFFFFFFFs , &message);
if (message->id == 2)
{
printf("TIM2 cnt = %u \r\n", message->cnt);
greenLED = !greenLED;
}
else if (message->id == 3)
{
printf("TIM3 cnt = %u \r\n", message->cnt);
redLED = !redLED;
}
}
}
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10.6.4.3 Mail Functions
Mbed OS has several functions related to mail usage. The function Mail is used to
create and initialize the mail object. The function empty is used to check whether
the mail is empty. The function full is used to check whether the mail is full. The
function try_alloc is used to allocate memory block from mail and returns imme-
diately if the mail is full. The function try_alloc_for is used in the same way as
the function try_alloc. However, it waits until the timeout value is expired. The
function try_alloc_until is used in the same way as the function try_alloc.
However, it waits until the given absolute time value is reached. The function
try_calloc is used to allocate memory block from the mail and initialize it to zero.
This function returns immediately if the mail is full. The function try_calloc_for
is used in the same way as the function try_calloc. However, it waits until the
timeout value is expired. The function try_calloc_until is used in the same way
as the function try_calloc. However, it waits until the given absolute time value
is reached. The function put is used to put data to mail. The function try_get
is used to get data from mail. The function try_get_for is used to get data
from mail until the given timeout is expired. Finally, the function free is used
to free a memory block from the mail. The functions Mail, try_alloc_until,
and try_calloc_until cannot be used inside an interrupt callback function.
The functions empty, full, try_alloc, try_calloc, try_get, put, and free
can be used inside interrupt callback functions. The functions try_alloc_for,
try_calloc_for, and try_get_for can be used inside an interrupt callback
function if their timeout value is set to zero. We next provide detailed information
on the mentioned mail functions in Mbed OS.

Mail()

bool empty()

bool full()

T* try_alloc()

T* try_alloc_for(Kernel::Clock::duration_u32 rel_time)
/*
rel_time: timeout value.
*/

T* try_alloc_until(Kernel::Clock::time_point abs_time)
/*
abs_time: absolute timeout time.
*/

T* try_calloc()

T* try_calloc_for(Kernel::Clock::duration_u32 rel_time)

T* try_calloc_until(Kernel::Clock::time_point abs_time)

osStatus put(T *mptr)
/*
mptr: pointer to the mail which will be inserted into the queue.
*/
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T* try_get()

T* try_get_for(Kernel::Clock::duration_u32 rel_time)

osStatus free(T *mptr)

10.6.4.4 Mail Usage Examples
We next provide three examples on the usage of mail in Mbed OS. In the first
example, given in Listing 10.25, we reform the C code in Listing 10.21 now in
C++ language. The reader can consult the FreeRTOS version of this example to
grasp the structure there.

Listing 10.25 The first mail example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1;

typedef struct
{
uint16_t buffer[10];
uint8_t id;
} message_t;

MemoryPool <message_t , 10> mempool;
Queue<message_t , 1> queue;

void thread1Fn()
{
uint16_t cnt = 0;
message_t *message;
while (true)
{
message = mempool.try_alloc();
message->buffer[0] = cnt;
queue.try_put(message);
cnt++;
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
message_t *message;
while (true)
{
queue.try_get_for(0xFFFFFFFFs , &message);
if (((message->buffer[0]) % 2) == 0)
{
greenLED = !greenLED;
}
else if (((message->buffer[0]) % 2) == 1)
{
redLED = !redLED;
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}
mempool.free(message);
}
}

In the second example, given in Listing 10.26, we reform the C code in
Listing 10.21 now in C++ language. Here, we benefit from mail instead of jointly
using the queue and memory pool together. The reader can consult the FreeRTOS
version of this example to grasp the structure there.

Listing 10.26 The second mail example in Mbed OS

#include "mbed.h"

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1;

typedef struct
{
uint16_t buffer[10];
uint8_t id;
} mail_t;

Mail<mail_t, 10> myMail;

void thread1Fn()
{
uint16_t cnt = 0;
mail_t *mail;
while (true)
{
mail = myMail.try_alloc();
mail->buffer[0] = cnt;
myMail.put(mail);
cnt++;
ThisThread::sleep_for(500ms);
}
}

int main()
{
thread1.start(thread1Fn);
mail_t *mail;
while (true)
{
mail = myMail.try_get_for(0xFFFFFFFFs);
if (((mail->buffer[0]) % 2) == 0)
{
greenLED = !greenLED;
}
else if (((mail->buffer[0]) % 2) == 1)
{
redLED = !redLED;
}
myMail.free(mail);
}
}
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In the third example, given in Listing 10.27, we reform the C code in List-
ing 10.22 now in C++ language. Here, we benefit from mail instead of jointly using
the queue and memory pool together. The reader can consult the FreeRTOS version
of this example to grasp the structure there.

Listing 10.27 The third mail example in Mbed OS

#include "mbed.h"

#define FLAG1 0x01
#define FLAG2 0x10

DigitalOut greenLED(LED1);
DigitalOut redLED(LED2);

Thread thread1(osPriorityLow);
Thread thread2(osPriorityLow);
Ticker ticker1;
Ticker ticker2;
EventFlags evt;

typedef struct
{
uint16_t buffer[10];
uint8_t id;
} mail_t;

Mail<mail_t, 16> myMail;

void thread1Fn()
{
uint16_t cnt1 = 0;
mail_t *mail;
while (true)
{
evt.wait_any(FLAG1, osWaitForever);
mail = myMail.try_alloc();
mail->buffer[0] = cnt1;
mail->id = 2;
myMail.put(mail);
cnt1++;
evt.clear(FLAG1);
}
}

void thread2Fn()
{
uint32_t cnt2 = 0;
mail_t *mail;
while (true)
{
evt.wait_any(FLAG2, osWaitForever);
mail = myMail.try_alloc();
mail->buffer[0] = cnt2;
mail->id = 3;
myMail.put(mail);
cnt2++;
evt.clear(FLAG2);
}
}
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void ticker1Cb()
{
evt.set(FLAG1);
}

void ticker2Cb()
{
evt.set(FLAG2);
}

int main()
{
thread1.start(thread1Fn);
thread2.start(thread2Fn);
ticker1.attach(&ticker1Cb, 1s);
ticker2.attach(&ticker2Cb, 2s);
mail_t *mail;
while (true)
{
mail = myMail.try_get_for(0xFFFFFFFFs);
if (mail->id == 2)
{
printf("TIM2 cnt = %u \r\n", mail->buffer[0]);
greenLED = !greenLED;
}
else if (mail->id == 3)
{
printf("TIM3 cnt = %u \r\n", mail->buffer[0]);
redLED = !redLED;
}
myMail.free(mail);
}
}

10.7 Software Timers in FreeRTOS

Tasks in RTOS may depend on time-based operations. The reader can benefit from
available timers introduced in Chap. 6 for this purpose. The usage strategy for these
timers is generating an interrupt at periodic time instants and jointly using an RTOS
component (such as event) to start a task. Although this is an acceptable option, the
procedure becomes complex when an interrupt and event are used together.

FreeRTOS provides another solution to generate time-based operations based on
its software timers. As the name implies, these timers are not physically available
on hardware. They are simple counters based on SysTick. Hence, they cannot
perform usual time-based operations such as capture, compare, or PWM generation.
However, software timers in FreeRTOS are suitable for periodic operations in which
precise timing is not needed. Here, we should emphasize that Systick has 1 ms
resolution. Hence, the resolution of the software timers is also 1 ms. On the other
hand, time-based task usage can be done fairly easy with software timers.
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Fig. 10.15 FreeRTOS timers and semaphores tab in STM32CubeMX

10.7.1 Software Timer Setup and Timer Functions

We can add a software timer to our FreeRTOS project in STM32CubeMX by the
“Configuration” part of the “FreeRTOS Mode and Configuration” section. There,
we should visit the “Timers and Semaphores” tab as in Fig. 10.15. Here, we can
choose from periodic or one-time timer.

As we make modifications in STM32CubeMX and save the project files, the
following code segments will be added to the three sections of the “main.c” file of
the project.

/* Definitions for Timer1 */
osTimerId_t Timer1Handle;
const osTimerAttr_t Timer1_attributes = {
.name = "Timer1"
};

/* Private function prototypes
-----------------------------------------------*/

...
void Timer_Callback1(void *argument);

/* Create the timer(s) */
/* creation of Timer1 */
Timer1Handle = osTimerNew(Timer_Callback1 , osTimerPeriodic , NULL,

&Timer1_attributes);

/* Timer_Callback1 function */
void Timer_Callback1(void *argument)
{
/* USER CODE BEGIN Timer_Callback1 */

/* USER CODE END Timer_Callback1 */
}

In the first section, software timer handle osTimerId_t is created with the name
Timer1Handle. Also, software timer attributes struct osTimerAttr_t is created
with the name Timer1. In the second section, the software timer is created with
its handle and attributes structure using the function osTimerNew. Timer1Handle
will be used to call the created software timer afterward. In the third section, the
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Timer_Callback1 function can be used to define what to do under the software
timer callback function.

Functions related to software timer management in FreeRTOS can be sum-
marized as follows. The function osTimerNew is used to create a new software
timer with the given callback function, working behavior, and additional arguments.
The software timer must be created after the kernel is initialized. The function
osTimerGetName is used to obtain the name of the software timer. The function
osTimerStart is used to start the software timer with given time ticks value.
The function osTimerStop is used to stop the software timer. The function
osTimerIsRunning is used to check whether the software timer is running or not.
The function osTimerDelete is used to delete the software timer. None of these
functions can be used inside an interrupt callback function. We next provide detailed
information on the mentioned software timer functions.

osTimerId_t osTimerNew(osTimerFunc_t func, osTimerType_t type,
void *argument , const osTimerAttr_t *attr)

/*
func: function pointer to callback function.
type: working behavior of software timer. It can be osTimerOnce

for one-shot or osTimerPeriodic for periodic behavior.
argument: argument to the timer callback function.
attr: pointer to the struct containing software timer attributes.

Set it to NULL in order to use default values.
*/
const char* osTimerGetName(osTimerId_t timer_id)
/*
timer_id: id of the software timer
*/

osStatus_t osTimerStart(osTimerId_t timer_id , uint32_t ticks)
/*
ticks: time ticks value of the software timer.
*/

osStatus_t osTimerStop(osTimerId_t timer_id)

uint32_t osTimerIsRunning(osTimerId_t timer_id)

osStatus_t osTimerDelete(osTimerId_t timer_id)

10.7.2 Software Timer Usage Examples

We next provide an example on the usage of the software timer in FreeRTOS. Here,
we toggle the onboard green LED on the STM32F4 board by adding the below code
snippets to our “main.c” file in addition to the code snippets given at the beginning of
this section. As we compile and execute the code, the green LED on the STM32F4
board starts toggling at 0.5 s intervals. We can also add a one-time timer to our
project in the same way.

/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
osTimerStart(Timer1Handle , 500U);
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/* USER CODE END RTOS_TIMERS */

/* USER CODE BEGIN Timer_Callback1 */

HAL_GPIO_TogglePin(GPIOG,GPIO_PIN_13);

/* USER CODE END Timer_Callback1 */

10.8 MemoryManagement in RTOS

Each created RTOS component needs memory (RAM) space for its operations.
As an example, the task needs memory space for its stack and control block. The
queue needs memory space for its buffer and control block. Therefore, memory
management is an important topic for RTOS operations. There are two ways to
perform memory allocation options in RTOS as dynamic and static. Each approach
has its own advantages and disadvantages.

In dynamic memory allocation, the memory for an RTOS component is allocated
at run time from heap memory. This allocation is handled automatically and unused
RTOS components can be deleted at run time to free memory space. However,
the deallocation process is very problematic and several problems may occur such
as memory fragmentation. Advanced real-time operating systems provide dynamic
memory allocation algorithms to prevent these problems.

In static memory allocation, the memory for an RTOS component is allocated
during linking the code, and a separate RAM space can be used for this purpose.
Hence, there will be no memory fragmentation problem since memory space is
allocated beforehand. However, the allocated memory space must be kept when the
code is active even if it is not used after some time.

Variables can also be created during RTOS run time. Here, the standard C
functions malloc, calloc, and free can be used to create and free memory
space for variables. However, these functions are not thread-safe (not suitable to be
used under a task) and their execution times are inconsistent. Therefore, real-time
operating systems have their own allocation and deallocation functions or make
malloc, calloc, and free thread-safe with different approaches. Another way to
perform dynamic memory allocation is using memory pool. We explained memory
pool in connection with the queue and mail in Sect. 10.6.

10.8.1 MemoryManagement in FreeRTOS

We can handle memory management in FreeRTOS under STM32CubeMX. To do
so, we should first open the “Configuration” part of the “FreeRTOS Mode and
Configuration” section. There, we should visit the “Memory management settings”
section under the “Config parameters” tab as in Fig. 10.16.

In Fig. 10.16, TOTAL_HEAP_SIZE is used to set the desired heap size in bytes.
This value is set to 15360 bytes as default. The reader should take different
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Fig. 10.16 FreeRTOS memory management settings under the Config parameters tab in
STM32CubeMX

parameters into account while setting the heap size, such as total RAM and
application stack size. In the same section, Memory Management scheme is used
to select memory allocation algorithm for FreeRTOS. It can be selected between
heap_1 and heap_5. In heap_1, only memory allocation is permitted. There is no
memory-free operation. heap_2 allows memory freeing operation. However, the
freed memory blocks cannot be combined together. heap_3 permits the usage of
standard functions malloc and free for memory allocation in thread-safe way. In
heap_4, freed memory blocks can be combined together. In heap_5, nonadjacent
memory sections can be used as heap. As an example, different parts of SRAM1
and SRAM2 can be used together to form heap memory. Except heap_3, in other
options the function pvPortMalloc(size) can be used for allocating memory, and
the function vPortFree(ptr) can be used for freeing unused memory (if allowed).
The Memory Management scheme is set to heap_4 by default.

In Fig. 10.16, there is also a “FreeRTOS Heap Usage” tab. Through it, the reader
can observe the total used and free heap memory. Moreover, memory used for each
RTOS component can be observed in this tab.

Each RTOS component can be created statically or dynamically by selecting
Static or Dynamic from the “Allocation” section of its creation window. If



408 10 Real-Time Operating Systems

the Dynamic option is selected for a component, its memory blocks are created
automatically in the heap. If the static option is selected for the component,
pointers and memory regions can be selected manually. Till this time, we used
dynamic memory allocation in all our examples.

We will next show how static memory allocation can be done by an example.
To do so, we will create a task and perform dynamic memory allocation without
using memory pool inside this task. Here, we will keep default values for heap size
and memory allocation algorithm. In order to create a task statically, go to “Tasks
and Queues” tab and click “Add” under “Tasks” to create a new task. After entering
the task name, priority, stack size, and task function as before, we will change the
allocation selection as “Static.” The user can observe that “Buffer Name” (which is
the array name used as stack) and “Control Block Name” sections are now available
to change their default names. The reader can change them if desired.

As we make modifications in STM32CubeMX and save project files, the
following code segment will be added to the “main.c” file of the project. As can be
seen here, the task stack and control blocks have been created and defined statically
unlike dynamically created tasks given in the previous examples.

/* Definitions for myTask04 */
osThreadId_t myTask04Handle;
uint32_t myTask04Buffer[ 128 ];
osStaticThreadDef_t myTask04ControlBlock;
const osThreadAttr_t myTask04_attributes = {
.name = "myTask04",
.cb_mem = &myTask04ControlBlock ,
.cb_size = sizeof(myTask04ControlBlock),
.stack_mem = &myTask04Buffer[0],
.stack_size = sizeof(myTask04Buffer),
.priority = (osPriority_t) osPriorityHigh7 ,
};

Next, we should add the following code segments to the specified places in the
“main.c” file of the project. Here, memory space for ten uint32_t elements are
allocated dynamically in the task function StartTask04. Then, elements of the
data array are copied into this new allocated memory space. Afterward, we take
square of each element and obtain their average. Finally, allocated memory region
is freed at the end of the task function StartTask04.

/* USER CODE BEGIN PV */
uint8_t i;
uint16_t data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
uint32_t average;
/* USER CODE END PV */

/* USER CODE END Header_StartTask04 */
void StartTask04(void *argument)
{
/* USER CODE BEGIN StartTask04 */
/* Infinite loop */
for(;;)
{
average = 0;
uint16_t *ptr = NULL;
ptr = pvPortMalloc(10);
for(i = 0; i < 10; i++){
*(ptr+i) = data[i] * data[i];
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}
for(i = 0; i < 10; i++){
average += *(ptr+i);
}
average /= 10;
vPortFree(ptr);
osDelay(1000);
}
/* USER CODE END StartTask04 */
}

10.8.2 MemoryManagement in Mbed OS

In Mbed OS, the ISR/scheduler, idle, timer, and main thread are started by default.
Hence, they are created in static form. The first three of these threads use 2 kB
of RAM and this value cannot be changed. The main thread uses 4 kB of RAM.
This value can be set from the file “mbed_app.json” by changing the parameter
rtos.main-thread-stack-size there. Likewise, each formed thread has 4 kB
stack size by default. This value can be changed from the “mbed_app.json” file
by changing the parameter rtos.thread-stack-size there. Or the thread stack
size can be changed by setting the stack_size parameter of the thread creation
function.

There is no initial “mbed_app.json” file created by default in an Mbed Studio
project. Therefore, we should create an empty “mbed_app.json” file at the project
root folder. Then, we can adjust memory parameters from this file. As an example,
we can add the below code lines to set the main and user thread stack sizes to 2 kB.

{
"target_overrides": {
"*": {
"rtos.main-thread-stack-size": 2048,
"rtos.thread-stack-size": 2048
}}}

When we check kernel object creation functions in Mbed OS, it can be seen that
there are no predefined initialization parameters for related control blocks. They are
created automatically and placed in the heap which means they cannot be created
statically via Mbed OS functions. We can only place thread stacks inside the static
SRAM region instead of heap region. We will show how this can be achieved by the
example in Listing 10.28.

Listing 10.28 The memory management example in Mbed OS

#include "mbed.h"

uint8_t i;
uint16_t data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
uint32_t average;

uint8_t thread1Buffer[1024];
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Thread thread1(osPriorityHigh , 1024, thread1Buffer);

void thread1Fn()
{
while (true)
{
average = 0;
uint16_t *ptr = NULL;
ptr = (uint16_t *)malloc(10);
for (i = 0; i < 10; i++)
{
*(ptr + i) = data[i] * data[i];
}
for (i = 0; i < 10; i++)
{
average += *(ptr + i);
}
average /= 10;
printf("%u \n", average);
free(ptr);
ThisThread::sleep_for(1000ms);
}
}

int main()
{
thread1.start(thread1Fn);

while (true);
}

In Listing 10.28, we create a 1 kB buffer for the thread1 stack in static form.
In fact, this is the Mbed OS version of the memory management example in the
previous section. Here, the functions malloc and free are used to allocate or free
memory blocks from the heap. However, these functions are not thread-safe. Hence,
they must be used carefully and protected by mutexes when multiple threads use
them.

10.9 Application: RTOS-Based Implementation of the Robot
Vacuum Cleaner

In this chapter, we migrate the developed software of our robot vacuum cleaner
to RTOS. Hence, we benefit from RTOS and show how it can be used to
organize complex operations in our robot. We provided the equipment list, circuit
diagram, detailed explanation of design specifications, and peripheral unit settings
in a separate document in the folder "Chapter10\EoC_applications" of the
accompanying supplementary material. In the same folder, we also provided the
complete C, C++, and MicroPython codes for the application.
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10.10 Summary of the Chapter

RTOS offers a new perspective to realize complex projects. The main difference here
compared to bare-metal programming is that the code to be executed is partitioned
into tasks. There is also a kernel which coordinates the order of task execution.
This setup forms an efficient usage of microcontroller resources. In this chapter, we
focused on RTOS components via FreeRTOS and Mbed OS. To do so, we evaluated
task, event, mutex, semaphore, queue, and mail in both RTOS types. We provided
sample codes for their usage as well. As the end of chapter application, we migrated
our robot vacuum cleaner codes to an RTOS-based project. Hence, the reader can
observe the fundamental difference between a complex project formed by bare-
metal programming and RTOS operations. We believe this will convince the reader
that RTOS usage should be considered in forming complex projects.

Problems

10.1. Why has RTOS emerged? What is the main difference between RTOS usage
and bare-metal programming?

10.2. What is a kernel in RTOS?

10.3. What is a task?

10.4. Why is kernel tick used in RTOS?

10.5. Why is the code block wrapped by an infinite loop under tasks?

10.6. What should we understand from task states and priorities?

10.7. Is it possible to eliminate the idle task from RTOS completely?

10.8. Form a project with the following specifications. Create two tasks named
myTask02 and myTask03 in addition to the default task. Select the priority of
these tasks as osPriorityHigh and osPriorityAboveNormal, respectively. The
default task will toggle the onboard green LED, keeps CPU busy for 1 second
using the appropriate function (HAL_Delay for FreeRTOS and wait_us for Mbed
OS), and then yields the process. myTask03 toggles the red LED and then waits
1 second using the appropriate function (HAL_Delay for FreeRTOS and wait_us
for Mbed OS). Finally, myTask02 changes the priority of myTask03 between
osPriorityAboveNormal and osPriorityLow every 10 s. Form the project
using:
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(a) FreeRTOS under STM32CubeIDE.
(b) Mbed OS under Mbed.

10.9. Form a project with the following specifications. Create a task named
myTask02 in addition to the default task. Select the priority of this task as
osPriorityNormal. These two tasks are used to toggle onboard green and red
LEDs, respectively. The default task is triggered by the Timer 2 module interrupt via
event flag. The time interval for the Timer 2 module is set as 1 second. myTask02
is triggered by the external interrupt of onboard push button via another event flag.
Form the project using:

(a) FreeRTOS under STM32CubeIDE.
(b) Mbed OS under Mbed.

10.10. Form a project with the following specifications. Create a task named
myTask02 in addition to the default task. Select the priority of this task as
osPriorityHigh. These two tasks are used to send 500 consecutive numbers (as
number1 and number2) via USART1 module. The default task is used to send
number1 and myTask02 is used to send number2. Start of myTask02 will be
delayed by 100 ms using an appropriate function. After myTask02 does its job,
it is suspended by an appropriate function. The process inside each task must be
protected by a mutex. Form the project using:

(a) FreeRTOS under STM32CubeIDE.
(b) Mbed OS under Mbed.

10.11. Repeat Problem 10.10 using a semaphore instead of mutex.

10.12. Form a project with the following specifications. The ADC1 module is
configured to obtain 100 consecutive measurements from pin PA5. ADC conversion
is triggered by the Timer 3 module with 1 KHz sampling frequency. We also create
a structure with a variable for id of the ADC module and array with 100 elements.
This structure is filled with obtained measurements and placed in a queue in the
ADC interrupt callback function. Default task gets this structure from the queue
and takes the average of measurements. The onboard green LED is turned on if the
average value is larger than 2.5 V. It is turned off if the average value is less than
2.5 V. Form the project using:

(a) FreeRTOS under STM32CubeIDE.
(b) Mbed OS under Mbed.
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10.13. Repeat Problem 10.12 using mail instead of queue.

10.14. Repeat Problem 10.8 in C language under STM32CubeIDE using software
timer to change the priority of myTask03 instead of myTask02.
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11LCD, Touch Screen, and Graphical User
Interface Formation

11.1 LCD

We can group displays into two types as emissive and non-emissive. In the first
group, the image is formed directly on the display. Popular devices using this
technique are CRT, plasma, LED, and OLED screens. In the second group, light
is formed in backside of the display. Then, it is filtered by a panel and the image is
formed. The most popular device using this technique is LCD. Since the STM32F4
board has an LCD on it, we will focus on this display type in this chapter.

11.1.1 LCD Structure

There is a layered structure in LCD. These layers are backlight, diffusor, bottom
polarization filter, bottom electrode (with TFT, if the LCD is of active matrix type),
liquid crystal, top electrode, color filter, top polarization filter, and glass cover from
bottom to top. We provide this layered structure in Fig. 11.1.

LCD is a non-emissive display type. Hence, it requires backlight to be generated
either by LED or fluorescent lamp. The diffuser layer distributes this light homoge-
neously on the display. The light is passed through the liquid crystal layer. Bottom
and top electrodes generate an electromagnetic field to control crystals in the liquid
crystal layer. Through this operation and usage of polarization filters (to control the
passing light intensity), we can form an image by stopping, passing, or dimmed
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Fig. 11.1 Layered LCD structure

passing of light. The liquid crystal layer does not have color control. Therefore, an
extra color filter is used for this purpose. The glass cover protects the display.

11.1.2 LCDWorking Principles

We should control the LCD and its smallest elements (called pixels) to display an
image on it. This operation is called driving the display. There are four different
display driving techniques as direct, multiplex, passive matrix, and active matrix.
The direct driving technique works extensively on seven-segment displays. The
multiplex technique is an extension of the direct driving technique such that more
than one seven-segment module can be driven. Passive and active matrix display
driving techniques are used in LCDs. These methods are based on bottom and top
electrodes introduced in the previous section. The passive matrix technique is based
on the placement and driving of electrodes. There is an additional thin film transistor
(TFT) layer at the bottom layer in the active matrix display driving technique.

The LCD on the STM32F4 board has a TFT layer based on the active matrix
display driving technique. However, it is not possible to drive the LCD directly.
Therefore, there are dedicated display driver modules for this purpose. They take
the image to be displayed from a source (such as microcontroller) and feed it to the
display with appropriate formatting. We will talk about the specific module on the
STM32F4 board in Sect. 11.1.4.

Let’s briefly explain working principles of a generic LCD. Beforehand, we
should make some definitions. The smallest image element to be displayed on the
LCD is called pixel. The pixel definition originates from digital image processing
to be introduced in Chap. 14. A row in the display is called line. The visible area in
the display is called frame.

The display driver sends pixel information one pixel at a time starting from top
left position of the frame. This operation is controlled by the pixel clock signal
generated by the display driver module. The pixel clock increases the line pointer.
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Hence, the active pixel is moved to right at every pixel clock. As the end of line
is reached, the operation restarts from beginning of the next line. This operation is
controlled by the HSYNC signal generated by the display driver module. HSYNC
resets the display column pointer to the leftmost position while moving to the next
line. As the rightmost pixel of the last line in the frame is reached, the operation
restarts from the top left position of the frame. This operation is controlled by the
VSYNC signal generated by the display driver module. VSYNC resets the display
line pointer and sets it to the starting point in the frame. The frequency of the pixel
clock has the highest value, with VSYNC and HSYNC having integer division of
this value. Frequency of the overall display operation is called refresh or frame rate.

There are five regions in a typical display, four of them non-visible and one of
them visible. Non-visible regions are virtual. They are called vertical back porch,
vertical front porch, horizontal back porch, and horizontal front porch. They are also
called horizontal and vertical blanking. These names originate from CRT displays.
They are used in digital displays to adjust the frame buffer keeping the image to be
displayed and interrupt generation by the image source (such as microcontroller).
The visible region in the display is called active area. We provide the HSYNC and
VSYNC signals and non-visible and visible regions in a generic display in Fig. 11.2.
The reader can understand the definitions better by observing this figure.

11.1.3 Connecting the LCD to an Image Source

We introduced working principles of the LCD in the previous section. Here, we will
focus on how to transmit an image from its source to LCD via display driver module.
Since we are using the STM32F4 microcontroller in this book, we will call it as the
(image) source from this point on.

There are three digital connection types to be used between the source and LCD.
These are MIPI display bus interface (MIPI-DBI), MIPI display parallel interface
(MIPI-DPI), and MIPI display serial interface (MIPI-DSI). The Mobile Industry
Processor Interface (MIPI) is a group working on camera and LCD connection
standards. MIPI-DBI has three types as type A, type B, and type C. These are based
on Motorola 6800 bus, Intel 8080 bus, and SPI, respectively.

In MIPI-DBI, the display driver should have a frame buffer. Hence, the image
is transferred from the source to this frame buffer. As the image is transferred to
the frame buffer, it can be displayed by the display driver continuously. In MIPI-
DPI, the display driver does not have a frame buffer. The image to be displayed
is kept in the source and directly sent to display. Therefore, the image should be
transferred in real time. Otherwise, the image on the display vanishes. In MIPI-DSI,
the display driver should have a frame buffer to operate. The image is transferred
from the source to this frame buffer by a high-speed differential line. This setup
needs an extra PHY circuitry.
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Fig. 11.2 Synchronization signals and regions in a generic display

11.1.4 LCD on the STM32F4 Board

The STM32F4 board has a 2.4 inch color LCD TFT display on it with 320 × 240
pixel size. There is an integrated display driver module on the LCD called ILI9341
“TFT LCD Single Chip Driver” [3]. This driver has an internal RAM, with size
172800 bytes, used as frame buffer. Hence, each pixel can be represented by 18
bits in this frame buffer. To be more specific, each pixel has red, green, and blue
color components each represented by six bits. This color representation format is
called RGB666. The total number of color variations in the LCD can be calculated
as 26 × 26 × 26 = 262144. The ILI9341 display driver module supports MIPI-DBI
type B parallel, MIPI-DBI type C serial (SPI), and MIPI-DPI parallel connection
types. The driver has its own internal oscillator. The necessary pixel clock, VSYNC,
and HSYNC signals to drive the LCD are generated this way. The reader can check
pin connections between the LCD and STM32F4 microcontroller from [2].
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11.2 Touch Screen

The user can interact with the GUI running on the LCD via touch screen. The LCD
on the STM32F4 board has an integrated touch screen on it. Therefore, we will
briefly explore how a touch screen works in this section. Then, we will summarize
properties of the touch screen on the LCD of the STM32F4 board.

11.2.1 Touch ScreenWorking Principles

Touch screen (or panel) is a transparent layer added on top of the display unit. It
senses the touch and its location on the display. The touch screen is composed of
two modules as sensor and controller. The sensor module is the part detecting touch
by the user. It can be of type as resistive or capacitive. In general, the touch sensor
is placed on top of the indium tin oxide (ITO) glass on the display. The controller
module drives the touch sensor. Moreover, it transfers the sensed touch data to an
external device (such as the STM32F4 microcontroller) via I2C or SPI interface.

The touch screen on the LCD of STM32F4 board is formed by four-wire resistive
layer. In it, there is a flexible resistive polyethylene (PET) film layer on top. This
layer is conductive to some degree. Below it, there is another hard resistive layer
which is also conductive to some degree. There is a free space between these two
layers. We can think these two layers as two separate resistors. Each resistor has
two wires for connection, hence the name four-wire. We provide this structure in
Fig. 11.3. As can be seen in this figure, the resistor wires (electrodes) are placed on
the left and right sides of the top layer. They are placed on the top and bottom of
the bottom layer. Hence, we can assume that there is one horizontal and one vertical
resistor placed on the top and bottom layers, respectively.

We can explain working principles of the four-wire resistive layer based on the
setup in Fig. 11.4. The untouched case is given in Fig. 11.4a. Here, the resistors do
not touch each other. When the user presses the top layer, it moves downward by
the pressure applied to it. This way, the top layer touches the bottom layer. In other
words, the resistors touch each other.

Fig. 11.3 Four-wire resistive
touch screen layers
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Fig. 11.4 Four-wire resistive touch screen equivalent circuits. (a) Untouched case. (b) Vertical
touch. (c) Horizontal touch

We can detect the vertical and horizontal touch location on the screen as follows.
We first connect VDD and ground to the bottom layer pins. One pin at the top layer
is connected to the ADC module. The touched location forms a voltage divider as
in Fig. 11.4b. The middle of the voltage divider is connected to the ADC module
through the top layer pin. Hence, the voltage value read there (proportional to the
VDD value) gives the vertical touch location with respect to screen height. After this
measurement, the top layer pins are connected to VDD and ground, respectively.
Then, a bottom layer pin is connected to the ADC module. Now, the touched
location forms a voltage divider as in Fig. 11.4c. As with the same reasoning in
the previous operation, we can obtain the horizontal touch location with respect to
screen width. This way, we can obtain the horizontal and vertical touch locations.
This operation is repeated continuously to detect touch locations on the screen.

11.2.2 Touch Screen on the LCD of the STM32F4 Board

The LCD on the STM32F4 board has an integrated four-wire touch screen on it.
There is the STMPE811 touch driver IC on the STM32F4 board to control this
touch screen. This IC converts the touch information, received from the touch
screen, to the location information. It then sends this information to the STM32F4
microcontroller via I2C interface. The STMPE811 IC also has a pin which generates
GPIO interrupt. The user can check this pin when reading the location from the
touch screen. Hence, the microcontroller can stay in low power mode when not
used. The reader can check pin connections between the touch screen and STM32F4
board from [2].
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11.3 HardwareModules in the STM32F4Microcontroller for
LCD and Touch Screen Control

There are two dedicated modules in the STM32F4 microcontroller for LCD and
touch screen control. These are LCD-TFT display controller (LTDC) and DMA2D
(or Chrom-ART accelerator). We will introduce these modules in this section. We
will also use the SPI and I2C communication modules, introduced in Chap. 8,
besides these. To be more specific, we will benefit from SPI in LCD usage. We
will benefit from I2C in touch screen usage.

11.3.1 LCD-TFT Display Controller

The LCD-TFT display controller (LTDC) is a peripheral unit used for driving LCD-
TFT displays in parallel manner (or in MIPI-DPI form). It provides RGB color bits
(in red, green, and blue form), synchronization signals, data enable signal, and pixel
clock to the LCD in parallel manner. It can support RGB888 format output with 24-
bit data. It also supports RGB565 and RGB666 data formats. The LTDC supports
maximum 1024 × 768 pixel resolution. We will explain the mentioned color formats
and pixel resolution in detail in Sect. 11.3.2 and Chap. 14.

The LTDC module can be used to program the active area of the display and its
size. The module can display two (foreground) images and one background image
in layered form as follows. The background image is placed at the bottom. The first
image is placed on it. The second image is placed on top of the first image. By using
different transparency values, a blended image can be formed. The LTDC module
performs all these operations within itself on pixel basis.

The LTDC module supports several input image formats. These are ARGB8888,
RGB888, RGB565, ARGB1555, ARGB4444, L8 (8-bit luminance or CLUT), AL44
(4-bit alpha + 4-bit luminance), and AL88 (8-bit alpha + 8-bit luminance). The
module converts these formats to the RGB888 format before sending them to the
display. It can also apply dithering.

General block diagram of the LTDC module is as in Fig. 11.5. As can be seen
in this figure, there are seven block types in the LTDC module as FIFO buffers
(layers 0 and 1), pixel format converters, timing generator, registers, blending block,
dithering block, and GPIO control block. We will explain working principles of the
LTDC module based on these next.

The LTDC module gets the image to be displayed either from DMA2D (to be
explained in Sect. 11.3.2) or STM32F4 RAM on a pixel basis. This image is stored
in FIFO buffers of the module. If one-layer image will be used, only layer 1 FIFO
buffer is used in the LTDC. Afterward, the input image is converted to the suitable
format for LCD. If a two-layer image is used, blending is applied. Dithering can
also be applied if needed. Then, the image is sent to the LCD via GPIO pins. The
timing generator generates all synchronization clock signals.
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Fig. 11.5 LTDC general block diagram

11.3.2 DMA2D

The DMA2D module works in the same way as with the DMA module. However,
it is dedicated to image operations only. The DMA2D module has direct access to
memory. It can perform four different tasks, to be explained in the following para-
graph, without CPU support. Besides, it can perform these tasks faster than the CPU.
STMicroelectronics calls the graphic acceleration operations done via this module
as Chrom-ART accelerator. Therefore, we will use both names interchangeably.

The DMA2D module can perform four basic tasks as follows. The first task
is filling a rectangular shape in the frame with unique color. This is a register
to memory operation. The second task is copying a frame or rectangular part of
the frame from one memory location to another. This is a memory-to-memory
operation. The third task is converting pixel format of a frame (or rectangular part
of a frame) while transferring it from one memory location to another. This is a
memory-to-memory operation with pixel conversion. The fourth task is blending
two images (with different size and pixel formats) and storing the resulting image
in memory. This is a memory-to-memory operation with pixel conversion and
blending.

The DMA2D module supports direct and indirect color modes. The direct color
mode consists of RGB565, RGB888, and ARGB888 formats. These need two to
three bytes per pixel. In the indirect color mode, the color lookup table (CLUT) is
used for reference color. CLUT is also called palette. Therefore, only the reference
index is kept in the pixel array which has size of the image. As a result, the image
size to be displayed decreases. However, this may lead to distortion in color values.
This can be minimized by the dithering operation. The DMA2D module has two
internal memory locations to keep CLUT values.
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Fig. 11.6 The DMA2D module block diagram

While converting the pixel via the DMA2D module, the input image formats can
be one of ARGB8888, RGB888, RGB565, ARGB1555, ARGB4444, L8, AL44,
AL88, L4, A8, and A4. The output image format can be one of ARGB8888,
RGB888, RGB565, ARGB555, and ARGB4444. Here, ARGB8888, RGB888,
RGB565, ARGB555, and ARGB4444 represent the direct color mode formats.
L4, L8, A4, A8, AL44, and AL88 represent indexed color mode formats. As an
example, L8 indicates that the CLUT is formed by 256 entries, each being either
16-bit RGB565, 24-bit RGB888, or 32-bit ARGB8888 color representation. The
pixel array is formed by one byte index data. For more information on direct and
indexed color formats, please see [4].

We provide block diagram of the DMA2D module in Fig. 11.6. As can be seen
in this figure, the module has 256×32-bit RAM (two blocks), FIFO buffers (one
for background and another for foreground), pixel format converters (two blocks),
blender, output pixel format converter, output FIFO buffer, and registers. We will
explain working principles of the DMA2D module based on these next.

The DMA2D module receives data from the RAM via AHB. Format conversion
can be applied to the image on pixel basis if needed. The 256×32-bit RAM block
is used for CLUT table if the image will be represented in indexed form such as L4
or L8. The DMA2D module can apply blending if needed. If the blending operation
will not be used, only the foreground FIFO buffer is used in operation. The image is
converted to the desired output format and sent to RAM via AHB.
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11.4 Setting Up the LCD on the STM32F4 Board

We can use LCD on the STM32F4 board either by SPI or LTDC modules. We
provide both methods in this section. While doing so, we benefit from C, C++,
and MicroPython languages whenever possible.

11.4.1 Setup for SPI-Based Usage

We will consider the setup for LCD usage via SPI as the first method. Although this
is a suboptimal solution, we had to follow such a path to use the LCD and digital
camera (to be introduced in Chap. 14) together.

11.4.1.1 Setup via C Language
We should start with setting up the SPI module in STM32CubeMX as explained in
Chap. 8. More specifically, we should use the SPI5 module in “Half-Duplex Master”
mode with the settings in STM32CubeMx as “Frame Format” “Motorola”; “Data
Size” “8 Bits”; “First Bit” “MSB First”; “Prescaler (for Baud Rate)” “2”; “Clock
Polarity (CPOL)” “Low”; “Clock Phase (CPHA)” “1 Edge”; “CRC Calculation”
“Disabled”; NSS Signal Type” “Software.” We provide the mentioned settings
applied on the “SPI5 Mode and Configuration” tab in Fig. 11.7.

We will be using pins PF7 and PF9 for the SPI module. Both pins should have
the “maximum output speed” value set to “very high.” This is important; otherwise,
the LCD module will not work. Besides, we should set the pins PC2 and PD13 as
GPIO output. These pins are used for “command” and “command and data write
enable” for the LCD. As a side note, LCD can get both image data and commands
to set its own registers. The ILI9341 LCD driver decides on the incoming bits as
either being data or command by the pins PC2 and PD13.

We should also set the system clock to 180 MHz. To do so, we should use the
clock configuration tab. There, we should set HCLK (MHz) parameter as 180. This
way we can drive the LCD at 45 MHz.

11.4.1.2 Setup via C++ Language
We will use the LCD module via SPI in Sect. 11.5.1.2 in C++ language. There, we
will also handle the setup via predefined functions. Hence, we do not need any extra
adjustments besides these.

11.4.1.3 Setup via MicroPython
MicroPython has no class to perform SPI-based LCD operations. Therefore, we
created a lcdSPI class in our custom MicroPython firmware. The reader can find
the MicroPython firmware in the book web site. The lcdSPI module can be created
and initialized using the function init(rotation). All GPIO and SPI module
configurations are done automatically in this function. Initialization sequence for
LCD is also realized in this function. Finally, the rotation is used to set screen
rotation. It can be set as 0 for vertical, 1 for horizontal, 2 for inverted vertical, and 3
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Fig. 11.7 SPI5 module
configuration tab for LCD

for inverted horizontal direction. After calling this function, SPI-based LCD module
will be ready to be used.

11.4.2 Setup for LTDC-Based Usage

We can also use the LCD on the STM32F4 board by the LTDC module. Unfor-
tunately, configuring this module is not easy, and some configurations should be
done manually. Therefore, we benefit from the board support package (BSP) drivers
provided by STMicroelectronics for this purpose.

11.4.2.1 Setup via C Language
In order to use BSP drivers for the LTDC module, we should first open a new
project and press the “.ioc” file to open the “Device Configuration Tool” in
STM32CubeMX. Then, we should follow the steps given in Sect. 9.5.2.1. Finally,
we should add the below C code script to the appropriate place in the “main.c” file.
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/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
/* USER CODE END Includes */

11.4.2.2 Setup via C++ Language
We will also benefit from the BSP drivers to use LTDC in C++ language. To
do so, we should first open a new project under Mbed Studio. As mentioned in
Sect. 9.5.2.2, we have two options at this stage.

In our first method, we will add the BSP library to our project as explained in
Sect. 9.5.2.2. Then, we will add the LCD wrapper library located at http://os.mbed.
com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/LCD_DISCO_
F429ZI/ to our project. As the “Next” button is pressed, the interface asks for
“Branch” or “Tag.” We can keep the default value. Then, we can use the BSP
drivers by adding the code line #include “LCD_DISCO_F429ZI.h” to our main
file.

To apply the second option, we will not make any specific modifications in
project properties. We should only add the folders “Libraries\Cpp\BSP_DISCO_
F429ZI” and “Libraries\Cpp\LCD_DISCO_F429ZI” directly to the project
folder. To note here, these codes are available in the accompanying book web
site. Then, we can use the BSP drivers by adding the code line #include
“LCD_DISCO_F429ZI.h” to our main file.

11.5 Usage of the LCD on the STM32F4 Board

As we set up the LCD on the STM32F4 board, we can use it afterward. To do so, we
will benefit from two methods based on SPI and LTDC modules. For both methods,
we provide C, C++, and MicroPython language-based codes whenever applicable.

11.5.1 Usage of the LCD via SPI

We can use the LCD via SPI. To do so, we provide methods on C, C++, and
MicroPython languages next.

11.5.1.1 Usage via C Language
We formed the “SPI LCD library” in C language to control the LCD on the
STM32F4 board via SPI. This library works in connection with the “image
processing library” to be introduced in Chap. 14. These libraries are available in
the accompanying book web site.

We have six functions in our “SPI LCD library.” These are as follows. The
function ILI9341_init initializes the LCD to be used by SPI. It also sets the
display rotation direction. The function ILI9341_setAddress sets address of
the active area of the display. The function ILI9341_setRotation sets the
display rotation. The function ILI9341_fillScreen fills the screen by a given

http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/LCD_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/LCD_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/LCD_DISCO_F429ZI/
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color in RGB565 format. If the white color is given, the display is cleared.
The function ILI9341_drawPixel plots a pixel with the address in the func-
tion ILI9341_setAddress by the given RGB565 color format. If the function
ILI9341_drawPixel is successively called, it processes the following pixels in the
line. This is done since the LCD increases its internal frame buffer pointer by one
at each operation. Here, end of line is also taken into account. When end of frame
is reached, the plotting operation restarts from the beginning location of the frame.
The function ILI9341_drawImage draws an image on LCD. The image should
be of type struct ImageTypeDef as explained in Chap. 14. We provide detailed
explanation of the functions next.

void ILI9341_init(uint8_t Rotation);
/*
Rotation: Rotation of the screen and can be one of

SCREEN_VERTICAL , SCREEN_HORIZONTAL , SCREEN_VERTICAL_INV or
SCREEN_HORIZONTAL_INV.

*/

void ILI9341_setAddress(uint16_t X1, uint16_t Y1, uint16_t X2,
uint16_t Y2);

/*
X1: x coordinate of the upper left corner of active area
Y1: y coordinate of the upper left corner of active area
X2: x coordinate of the lower right corner of active area
Y2: y coordinate of the lower right corner of active area
*/

void ILI9341_setRotation(uint8_t Rotation);

void ILI9341_fillScreen(uint16_t Color);
/*
Color: color to fill the screen in 16-bit RGB565 format.
*/

void ILI9341_drawPixel(uint16_t Color);
/*
Color: color of the pixel in 16-bit RGB565 format.
*/

void ILI9341_drawImage(ImageTypeDef *Pimg, uint16_t xOffset,
uint16_t yOffset);

/*
Pimg: pointer to the ImageTypeDef struct
xOffset: image start point offset in horizontal axis in terms of

pixels
yOffset: image start point offset in vertical axis in terms of

pixels
*/

We next provide two examples on the usage of LCD via SPI. The first example
displays an image, given as a header file, on the LCD. We provide the C code for
the first example in Listing 11.1.

Listing 11.1 Displaying an image on the LCD via SPI, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "ili9341.h"
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#include "mandrill.h"
/* USER CODE END Includes */

/* USER CODE BEGIN 2 */
ILI9341_init(SCREEN_HORIZONTAL);
ILI9341_fillScreen(WHITE);
ILI9341_drawImage(&RGB565_IMG , 0, 0);
/* USER CODE END 2 */

To execute the C code in Listing 11.1, we should open a new project under
STM32CubeIDE. Then, we should adjust the hardware as explained in Sect. 11.4.1.
In order to use the “SPI LCD library,” we should add the files “image.c” and
“ili9341.c” to the folder “project->Core->Src” and files “image.h” and “ili9341.h”
to the folder “project->Core->Inc” in our project. Besides adding the library files,
we should also add the “mandrill.h” file provided in the accompanying book web
site to the folder “project->Core->Inc” in our project. As we debug and run the code,
the Mandrill image will be displayed on the LCD.

In this example, we use the image provided as the header file. However, the
reader can also benefit from the Python file “ImageHeaderGenerator.py” provided
in the accompanying book web site (under the folder “Libraries\PC_Python”), to
transform his or her image file to the corresponding header file. In order to use
this file, we should have OpenCV installed in our PC. Please see Chap. 14 for this
purpose. Then, the user should enter the path of the input image and output header
file name. The user should also enable the related code line in the Python file for the
required header type. As the code is executed, the header file will be generated in
the same folder as the image.

The second example plots a color bar on the LCD. We provide the C code for
this example in Listing 11.2. In this code, the LCD is initialized first. Then, the
selected region is filled in the LCD with the functions ILI9341_setAddress and
ILI9341_drawPixel. As we run the code, we should see a color bar on the LCD.

Listing 11.2 Plotting a color bar on the LCD via SPI, the C code

/* USER CODE BEGIN Includes */
#include "ili9341.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PD */
#define COLORBAR_NUM 18
#define COLORBAR_WIDTH 20
#define SCREEN_WIDTH 320
#define SCREEN_HEIGHT 240
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint16_t colorBar[18] = {
0x000F, 0x03E0, 0x03EF, 0x7800, 0x780F, 0x7BE0,
0xC618, 0x7BEF, 0x001F, 0x07E0, 0x07FF, 0xF800,
0xF81F, 0xFFE0, 0xFFFF, 0xFD20, 0xAFE5, 0xF81F};

uint32_t i = 0, j = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
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ILI9341_init(SCREEN_HORIZONTAL);

for (i = 0; i < 18; i++)
{
if (SCREEN_WIDTH > i * COLORBAR_WIDTH)
{
ILI9341_setAddress(i * COLORBAR_WIDTH , 0, (i + 1) *

COLORBAR_WIDTH - 1, 240);
for (j = 0; j <= SCREEN_HEIGHT * COLORBAR_WIDTH; j++)
{
ILI9341_drawPixel(colorBar[i]);
}
}
}
/* USER CODE END 2 */

11.5.1.2 Usage via C++ Language
We formed the “SPI LCD library” in C++ language to control the LCD on
the STM32F4 board via SPI. This library works in connection with the “image
processing library” to be introduced in Chap. 14. These libraries are available in
the accompanying book web site.

We formed a class in the “SPI LCD library” to use the LCD in C++ language.
Our class is named ILI9341. It can also work as an initialization function if
its constructor has a parameter entered. Within our class, the function init
configures the SPI module. Afterward, it sets the ILI9341 LCD driver to SPI mode.
Finally, it sets the display rotation property. Our class has functions setAddress,
setRotation, fillScreen, drawPixel, and drawImage performing the same
operations as their C counterpart. We provide the detailed explanation for the class
ILI9341 and its functions next.

ILI9341(uint8_t Rotation = SCREEN_HORIZONTAL , uint32_t frequency
= 45000000)

/*
Rotation: specifies the screen orientation and can be one of

SCREEN_VERTICAL , SCREEN_HORIZONTAL , SCREEN_VERTICAL_INV or
SCREEN_HORIZONTAL_INV. The default is SCREEN_HORIZONTAL

frequency: SPI bus clock frequency to be set in Hz. The default
value is 45000000

*/

void init(uint8_t Rotation = SCREEN_HORIZONTAL , uint32_t
frequency = 45000000);

void setAddress(uint16_t X1, uint16_t Y1, uint16_t X2, uint16_t
Y2);

/*
X1: x coordinate of the upper left corner of active area
Y1: y coordinate of the upper left corner of active area
X2: x coordinate of the lower right corner of active area
Y2: y coordinate of the lower right corner of active area
*/

void setRotation(uint8_t Rotation);

void fillScreen(uint16_t Color);
/*
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Color: color to fill screen in 16-bit RGB565 format.
*/

void drawPixel(uint16_t Color);

void drawImage(IMAGE Pimg, uint16_t xOffset, uint16_t yOffset);
/*
Pimg: pointer to the IMAGE object
xOffset: image start point offset in horizontal axis in terms of

pixels
yOffset: image start point offset in vertical axis in terms of

pixels
*/

We next provide two examples on the usage of our “SPI LCD library” in C++
language. These examples are the same as their C language counterpart. In our
first example, given in Listing 11.3, we display an image from a header file as in
Listing 11.1.

Listing 11.3 Displaying an image on the LCD via SPI, the C++ code

#include "mbed.h"
#include "image.hpp"
#include "ili9341.hpp"
#include "mandrill.hpp"

ILI9341 ili9341;

int main()
{
RGB565_IMG.pData = RGB565_IMG_ARRAY;
RGB565_IMG.width = 160;
RGB565_IMG.height = 120;
RGB565_IMG.size = 160 * 120 * 2;
RGB565_IMG.format = 1;

ili9341.fillScreen(WHITE);
ili9341.drawImage(&RGB565_IMG , 0, 0);

while (true);
}

In order to execute the code in Listing 11.3, we should open a new project.
We do not need any initialization operations since the init function in our
library handles all these operations for us. We should add the “SPI LCD library”
and “image processing library” files “image.cpp,” “ili9341.cpp,” “image.hpp,” and
“ili9341.hpp” to our project folder. We should also add the “mandrill.h” file to
our project folder. As we run the code, we should see the Mandrill image on
the LCD. As in the previous section, the reader can benefit from the Python
file “ImageHeaderGenerator.py” provided in the accompanying book web site, to
transform his or her image file to the corresponding header file. The user should
also enable the related code line in the Python file for the required header type.

We repeat the operations in Listing 11.2 now in C++ language given in
Listing 11.4 as our second example. In this code, the LCD is initialized first.
Then, the selected region in the LCD is filled by the functions setAddress and
drawPixel.
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Listing 11.4 Plotting a color bar on the LCD via SPI, the C++ code

#include "mbed.h"
#include "image.hpp"
#include "ili9341.hpp"
#define COLORBAR_WIDTH 20

ILI9341 ili9341;

uint16_t colorBar[18] = {
0x000F, 0x03E0, 0x03EF, 0x7800, 0x780F, 0x7BE0,
0xC618, 0x7BEF, 0x001F, 0x07E0, 0x07FF, 0xF800,
0xF81F, 0xFFE0, 0xFFFF, 0xFD20, 0xAFE5, 0xF81F};

uint32_t i = 0, j = 0;

int main()
{

for (i = 0; i < 18; i++)
{
if (ili9341.ILI9341_SCREEN_WIDTH > i * COLORBAR_WIDTH)
{
ili9341.setAddress(i * COLORBAR_WIDTH , 0, (i + 1) *

COLORBAR_WIDTH - 1, 240);
for (j = 0; j <= ili9341.ILI9341_SCREEN_HEIGHT * COLORBAR_WIDTH;

j++)
{
ili9341.drawPixel(colorBar[i]);
}
}
}

while (true);
}

In order to execute the code in Listing 11.3, we should open a new project. We do
not need any initialization operations since the init function in our library handles
all these operations for us. We should add the files “image.cpp,” “ili9341.cpp,”
“image.hpp,” and “ili9341.hpp” to our project folder. As we run the code, we should
see a color bar on LCD.

11.5.1.3 Usage via MicroPython
The functions drawPixel(color) and fillScreen(color) can be used to paint
one pixel or fill LCD according to color, which is 16-bit color data in RGB565
format in the custom MicroPython firmware. The function setAddress(X1, Y1,
X2, Y2) is used to set the active area of the display. Here, X1, Y1, X2, and Y2
are used to represent four corner points of the desired active area. The function
drawImage(pData, width, height, size, xOffset, yOffset) is used to
plot the selected image on the LCD. Here, pData is the pointer of the image data.
width is the width of the image in terms of pixels. height is the height of the
image in terms of pixels. size is the total pixel number of the image. xOffset is
the image starting point offset in horizontal axis in terms of pixels. yOffset is the
image starting point offset in vertical axis in terms of pixels.
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We next provide two examples on the usage of our SPI-based LCD module in
MicroPython. These examples are the same as their C language counterpart. In our
first example, given in Listing 11.5, we display an image from a “.py” file as in
Listing 11.1. Here, we should also add the “mandrill.py” file to the MicroPython
file system. As we run the code, we should see the Mandrill image on LCD. As in
previous section, the reader can benefit from the Python file “ImageHeaderGenera-
tor.py” provided in the accompanying book web site, to transform his or her image
file to the corresponding header file. However, usable free size of MicroPython file
system is restricted to nearly 90 kB. Therefore, if the generated file size is larger than
this limit, it must be precompiled or frozen into MicroPython firmware as explained
in Chap. 15. In this example, width and height of the Mandrill image are selected as
80 and 60, respectively, in order to generate a “.py” file with reasonable size.

Listing 11.5 Displaying an image on the LCD via SPI, the MicroPython code

import lcdSPI
import pyb
import mandrill

lcdSPI.init(0)
lcdSPI.fillScreen(0)
lcdSPI.drawImage(mandrill.pData, mandrill.width, mandrill.height,

mandrill.size, 0, 0)

In the second example, given in Listing 11.6, LCD is initialized first. Then, the
selected region in the LCD is filled by the functions setAddress and drawPixel
to generate different color bars on the LCD.

Listing 11.6 Plotting a color bar on the LCD via SPI, the MicroPython code

import lcdSPI

COLORBAR_NUM = const(16)
COLORBAR_WIDTH = const(20)
SCREEN_WIDTH = const(320)
SCREEN_HEIGHT = const(240)

colorBar = [
0x000F, 0x03E0, 0x03EF, 0x7800, 0x780F, 0x7BE0,
0xC618, 0x7BEF, 0x001F, 0x07E0, 0x07FF, 0xF800,
0xF81F, 0xFFE0, 0xFFFF, 0xFD20, 0xAFE5, 0xF81F]

lcdSPI.init(1)
for i in range(COLORBAR_NUM):

if SCREEN_WIDTH > i * COLORBAR_WIDTH:
lcdSPI.setAddress(i * COLORBAR_WIDTH , 0, (i + 1) *

COLORBAR_WIDTH - 1, 240)
for j in range(SCREEN_HEIGHT * COLORBAR_WIDTH):

lcdSPI.drawPixel(colorBar[i])
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Table 11.1 BSP driver functions for LCD usage via LTDC module: the C language

BSP driver function Usage

BSP_LCD_Init Initializes the LCD

BSP_LCD_LayerDefaultInit Initializes the LCD layers

BSP_LCD_SelectLayer Selects the LCD layer

BSP_LCD_SetLayerWindow Sets the display window

BSP_LCD_SetTextColor Sets the text color

BSP_LCD_SetBackColor Sets the background color

BSP_LCD_SetFont Sets the text font

BSP_LCD_DrawPixel Writes pixel

BSP_LCD_Clear Clears the LCD

BSP_LCD_FillCircle Displays a full circle

BSP_LCD_FillRect Displays a full rectangle

BSP_LCD_DrawRect Displays a rectangle

BSP_LCD_DrawCircle Displays a circle

BSP_LCD_DisplayChar Displays one character

BSP_LCD_DisplayStringAt Displays a maximum of 60 characters on the LCD

11.5.2 Usage of the LCD via LTDC

We can also use the LCD via LTDC module. We provide methods in C and C++
languages for this purpose next.

11.5.2.1 Usage via C Language
We will benefit from the available BSP driver functions to use the LCD via LTDC
module in C language. These functions are tabulated in Table 11.1. For more
information on them, please see [1].

While using BSP driver functions for the LTDC, we should always start with
the function BSP_LCD_Init first which initializes the LTDC and RAM. Afterward,
we should use the function BSP_LCD_LayerDefaultInit to initialize the LTDC
layer. This function sets the frame buffer to be used by the layer (within RAM).
It also sets the image format to ARGB8888. If two layers will be used, then the
function BSP_LCD_SetLayerWindow should be used for selecting the layer.

We can repeat the examples in Sect. 11.5.1 via the LTDC module. To do so, we
formed the C code in Listing 11.7 for displaying a given image on LCD. In this code,
the LCD is initialized first. Then, the layer is selected and activated. We display the
image by the address LCD_FRAME_BUFFER.

Listing 11.7 Displaying an image on the LCD via LTDC, the C code

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
#include "mandrill.h"
/* USER CODE END Includes */

/* USER CODE BEGIN 2 */
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BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(1, LCD_FRAME_BUFFER);
BSP_LCD_SelectLayer(1);

BSP_LCD_SetLayerWindow(1, 0, 0, 160, 120);
BSP_LCD_SetLayerAddress(1, (uint32_t)RGB8888_IMG_ARRAY);
/* USER CODE END 2 */

To execute the C code in Listing 11.7, we should open a new project in
STM32CubeIDE. Then, we should apply the settings in Sect. 9.5.2.1. We should
also add the BSP driver files. Besides adding them, we should add the “mandrill.h”
file to “project->Core->Inc” in our project. As we debug and run the code, the
Mandrill image will be displayed on the LCD. The user can benefit from the Python
file “ImageHeaderGenerator.py” provided in the accompanying book web site, to
transform his or her image file to the corresponding header file. The user should
enable the related code line in the Python file for the required header type.

We can repeat the example in Listing 11.2 via the LTDC module. To do so, we
formed the C code in Listing 11.8. In this code, the LCD is initialized first. Then,
we use the functions BSP_LCD_FillRect and BSP_LCD_SetTextColor. We can
debug and run the code as in the previous example. Afterward, we expect to see a
color bar on the LCD.

Listing 11.8 Plotting a color bar on the LCD via LTDC, the C code

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PD */
#define COLORBAR_NUM 18
#define COLORBAR_WIDTH 20
#define SCREEN_WIDTH 240
#define SCREEN_HEIGHT 320
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint32_t colorBar[18] = {
0xFF000078, 0xFF007C00 , 0xFF007C78, 0xFF780000, 0xFF780078 , 0

xFF787C00,
0xFFC0C0C0, 0xFF787C78 , 0xFF0000F8, 0xFF00FC00, 0xFF00FCF8 , 0

xFFF80000,
0xFFF800F8, 0xFFF8FC00 , 0xFFF8FCF8, 0xFFF8A400, 0xFFA8FC28 , 0

xFFF800F8};

uint32_t i = 0, j = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(1, LCD_FRAME_BUFFER);
BSP_LCD_SelectLayer(1);

for (i = 0; i < 18; i++)
{
if (SCREEN_WIDTH > i * COLORBAR_WIDTH)
{
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BSP_LCD_SetTextColor(colorBar[i]);
BSP_LCD_FillRect(i * COLORBAR_WIDTH , 0, COLORBAR_WIDTH - 1,

SCREEN_HEIGHT);
}
}
/* USER CODE END 2 */

Our third example, given in Listing 11.9, prints characters on the LCD. To do
so, we should initialize the LCD first. Then, we should set the font to be used
in operation by the function BSP_LCD_SetFont. Afterward, we can print three
strings “STM32F429,” “LTDC LCD,” and “Example” to three lines on the LCD.
We can use the functions BSP_LCD_SetTextColor and BSP_LCD_Clear to set
the background and text colors, respectively. We should follow the steps as in our
second example to execute the code. As the code is run, we should see the strings
on the LCD.

Listing 11.9 Printing characters on the LCD via LTDC, the C code

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
/* USER CODE END Includes */

/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(1, LCD_FRAME_BUFFER);

BSP_LCD_SelectLayer(1);
BSP_LCD_SetFont(&Font24);
BSP_LCD_Clear(LCD_COLOR_WHITE);
BSP_LCD_SetTextColor(LCD_COLOR_DARKBLUE);

BSP_LCD_DisplayStringAt(0, 40, (uint8_t *)"STM32F429",
CENTER_MODE);

BSP_LCD_DisplayStringAt(0, 80, (uint8_t *)"LTDC LCD", CENTER_MODE
);

BSP_LCD_DisplayStringAt(0, 120, (uint8_t *)"Example", CENTER_MODE
);

/* USER CODE END 2 */

11.5.2.2 Usage via C++ Language
STMicroelectronics officially formed the BSP LCD library for Mbed. This library
can be reached from https://os.mbed.com/teams/ST/code/LCD_DISCO_F429ZI/.
BSP driver functions in this library are formed as class members. Therefore, all
the functions in Table 11.1 can be used by discarding the prefix BSP_LCD_. We
forked this library and modified it to be used by the most recent Mbed OS version.
The library contains the init function for initialization. The constructor of the class
LCD_DISCO_F429ZI performs the initialization operation, selects the layer, clears
the screen, and sets the background and font colors. Therefore, the user can proceed
with the display operation in C++ language.

We repeat the three examples in the previous section in C++ language. To
do so, we formed the C++ codes in Listings 11.10, 11.11, and 11.12. These
codes perform the same operations as the ones in Listings 11.7, 11.8, and 11.9,

https://os.mbed.com/teams/ST/code/LCD_DISCO_F429ZI/
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respectively. Therefore, the reader should follow the steps mentioned there. The user
can also benefit from the Python file “ImageHeaderGenerator.py” provided in the
accompanying book web site, to transform his or her image file to the corresponding
header file. The user should enable the related code line in the Python file for the
required header type.

Listing 11.10 Displaying an image on the LCD via LTDC, the C++ code

#include "mbed.h"
#include "LCD_DISCO_F429ZI.h"
#include "mandrill.h"

LCD_DISCO_F429ZI LCD;

int main()
{
LCD.SetLayerWindow(1, 0, 0, 160, 120);
LCD.SetLayerAddress(1, (uint32_t)RGB8888_IMG_ARRAY);

while (true);
}

Listing 11.11 Plotting a color bar on the LCD via LTDC, the C++ code

#include "mbed.h"
#include "LCD_DISCO_F429ZI.h"

#define COLORBAR_NUM 18
#define COLORBAR_WIDTH 20
#define SCREEN_WIDTH 240
#define SCREEN_HEIGHT 320

LCD_DISCO_F429ZI LCD;

uint32_t colorBar[18] = {
0xFF000078, 0xFF007C00 , 0xFF007C78, 0xFF780000, 0xFF780078 , 0

xFF787C00,
0xFFC0C0C0, 0xFF787C78 , 0xFF0000F8, 0xFF00FC00, 0xFF00FCF8 , 0

xFFF80000,
0xFFF800F8, 0xFFF8FC00 , 0xFFF8FCF8, 0xFFF8A400, 0xFFA8FC28 , 0

xFFF800F8};

uint32_t i = 0, j = 0;

int main()
{
for (i = 0; i < 18; i++)
{
if (SCREEN_WIDTH > i * COLORBAR_WIDTH)
{
LCD.SetTextColor(colorBar[i]);
LCD.FillRect(i * COLORBAR_WIDTH , 0, COLORBAR_WIDTH , SCREEN_HEIGHT

);
}
}

while (true);
}
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Listing 11.12 Printing characters on the LCD via LTDC, the C++ code

#include "mbed.h"
#include "LCD_DISCO_F429ZI.h"

LCD_DISCO_F429ZI LCD;

int main()
{
LCD.SetFont(&Font24);
LCD.Clear(LCD_COLOR_WHITE);
LCD.SetTextColor(LCD_COLOR_DARKBLUE);

LCD.DisplayStringAt(0, 40, (uint8_t *)"STM32F429", CENTER_MODE);
LCD.DisplayStringAt(0, 80, (uint8_t *)"LTDC LCD", CENTER_MODE);
LCD.DisplayStringAt(0, 120, (uint8_t *)"Example", CENTER_MODE);

while (true);
}

11.6 Setting Up the Touch Screen on the LCD of STM32F4 Board

We should set up the touch screen to use it. We will consider this operation next.
As a side note, LCD on the STM32F4 board should have been set beforehand as
explained in Sect. 11.4.

11.6.1 Setup via C Language

In order to use BSP drivers for the touch screen, we should first open a new project
and enable the LCD via LTDC as explained in Sect. 9.5.2.1. Then, we should add
the below C code script to the appropriate place in the “main.c” file.

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery_ts.h"
/* USER CODE END Includes */

11.6.2 Setup via C++ Language

We will be using the BSP driver functions available under Mbed provided by
STMicroelectronics. In order to use the BSP drivers for the touch screen, we should
first open a new project and enable the LCD via LTDC as explained in Sect. 9.5.2.1.
There are two options here.

In the first option, we will use the forked library under Mbed with the
URL https://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-
M/code/TS_DISCO_F429ZI/. To use it, we should add this library to our project.
To do so, right-click on the project and click on the “add library” button. Then,
enter the provided URL to the empty space. As we press “Next,” it will ask for

https://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/TS_DISCO_F429ZI/
https://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/TS_DISCO_F429ZI/
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“Branch” and “Tag.” Keep them in their default state. As these settings are done,
we should add the code line #include “TS_DISCO_F429ZI.h” to the main file of
our project.

The second option is directly adding the folders under “Libraries\Cpp\
TS_DISCO_F429ZI” to the current project folder. No additional operation is
needed for this option. As these settings are done, we should add the code line
#include “TS_DISCO_F429ZI.h” to the main file of our project.

11.7 Usage of the Touch Screen on the LCD of STM32F4 Board

As we set up the touch screen, the next step is its usage. We perform this operation
in C and C++ languages in the following sections.

11.7.1 Usage via C Language

We will benefit from the available BSP driver functions to use the touch screen
in C language. These functions are as follows. The function BSP_TS_Init ini-
tializes and configures the touch screen and its hardware resources. The function
BSP_TS_GetState returns status and position of the touch on the screen. The struct
TS_StateTypeDef stores the touch state structure. For more information on these
functions, please see [1]. We can use these functions as follows. We should first
initialize the touch screen by the function BSP_TS_Init. As we touch the screen,
we can check whether the screen has been touched and the touch location by the
function and struct BSP_TS_GetState and TS_StateTypeDef.

We provide an example on the usage of touch screen with the C code in
Listing 11.13. Within this code, we draw red circles on the screen. To do so, the
code initializes the LCD and then prints the strings to the screen as in Listing 11.9.
Then, the touch screen is initialized by the function BSP_TS_Init. The CPU waits
for a touch in an infinite loop. If we touch the screen, a red circle will be drawn on
that location by the function BSP_LCD_FillCircle.

Listing 11.13 Drawing red circles on the LCD via touching it, the C code

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_ts.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PD */
#define pRadius 5
/* USER CODE END PD */

/* USER CODE BEGIN 1 */
TS_StateTypeDef tsState;
uint16_t tsX, tsY;
/* USER CODE END 1 */
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/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_LCD_LayerDefaultInit(1, LCD_FRAME_BUFFER);

BSP_LCD_SelectLayer(1);
BSP_LCD_SetFont(&Font24);
BSP_LCD_Clear(LCD_COLOR_WHITE);
BSP_LCD_SetTextColor(LCD_COLOR_DARKBLUE);

BSP_LCD_DisplayStringAt(0, 40, (uint8_t *)"STM32F429",
CENTER_MODE);

BSP_LCD_DisplayStringAt(0, 80, (uint8_t *)"LTDC LCD", CENTER_MODE
);

BSP_LCD_DisplayStringAt(0, 120, (uint8_t *)"Example", CENTER_MODE
);

BSP_LCD_SetTextColor(LCD_COLOR_RED);
BSP_TS_Init(240, 320);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{

BSP_TS_GetState(&tsState);
if (tsState.TouchDetected)
{
tsX = tsState.X;
// tsY = tsState.Y; // uncomment to use with STM32F429I -DISC1

MB1075C (green board)
tsY = 320 - tsState.Y; // uncomment to use with STM32F429I -DISC1

MB1075E (blue board)

if (tsX > pRadius && tsY > pRadius && tsX < 240 - pRadius && tsY
< 320 - pRadius)

{
BSP_LCD_FillCircle(tsX, tsY, pRadius);
}
}
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

To execute the C code in Listing 11.13, we should open a new project in
STM32CubeIDE. Then, we should apply the settings in Sects. 11.4 and 11.6. We
should also add the BSP driver files to our project. Please note that there are two
different STM32F4 board versions available. Uncomment the corresponding line in
the code to get the correct values. As we debug and run the code, we can draw a red
circle by touching on the screen.

11.7.2 Usage via C++ Language

We will be using the BSP driver functions available under Mbed for C++ language.
STMicroelectronics formed the BSP functions in a library form as class members.
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These functions are as follows. The function Init initializes and configures the
touch screen functionalities and configures all necessary hardware resources. The
function GetState returns status of the touch screen. The struct StateTypeDef
stores the touch state structure. For more information on these functions, please
see [1]. We can use these functions as follows. We should first initialize the touch
screen by the function Init. We can check whether the screen has been touched
and its location by the function and struct GetState and TS_StateTypeDef.

We provide the C++ version of the example in Listing 11.13, with the code in
Listing 11.14. In order to run this code, we should form a new project. Then, we
should add the BSP library to our project as explained in Sect. 11.5.2. Please note
that there are two different STM32F4 board versions available. Uncomment the
corresponding line in the code to get the correct values. As we run the code, it
should work as its C counterpart.

Listing 11.14 Drawing red circles on the LCD via touching it, the C++ code

#include "mbed.h"
#include "LCD_DISCO_F429ZI.h"
#include "TS_DISCO_F429ZI.h"

#define pRadius 5

LCD_DISCO_F429ZI LCD;
TS_DISCO_F429ZI TS;

int main()
{
TS_StateTypeDef tsState;
uint16_t tsX, tsY;

LCD.SetFont(&Font24);
LCD.Clear(LCD_COLOR_WHITE);
LCD.SetTextColor(LCD_COLOR_DARKBLUE);

LCD.DisplayStringAt(0, 40, (uint8_t *)"STM32F429", CENTER_MODE);
LCD.DisplayStringAt(0, 80, (uint8_t *)"LTDC LCD", CENTER_MODE);
LCD.DisplayStringAt(0, 120, (uint8_t *)"Example", CENTER_MODE);

LCD.SetTextColor(LCD_COLOR_RED);
while (true)
{
TS.GetState(&tsState);
if (tsState.TouchDetected)
{
tsX = tsState.X;
// tsY = tsState.Y; // uncomment to use with STM32F429I -DISC1

// MB1075C (green board)
tsY = 320 - tsState.Y; // uncomment to use with STM32F429I -DISC1

// MB1075E (blue board)
if ((tsX > pRadius) && (tsY > pRadius) && (tsX < (240 - pRadius))

&& (tsY < (320 - pRadius)))
{
LCD.FillCircle(tsY, tsY, pRadius);
}
}
}
}
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11.8 Graphical User Interface Formation via TouchGFX

Since we have an LCD with integrated touch screen on the STM32F4 board, we
can form graphical user interface (GUI) for it. We will benefit from the TouchGFX
software provided by STMicroelectronics for this purpose. TouchGFX simplifies
GUI formation for the user. We should use it in connection with STM32CubeIDE.
To be more precise, TouchGFX uses C language in STM32CubeIDE in connection
with the HAL library. It uses C++ language while forming the GUI. This usage will
become more clear in the following sections.

11.8.1 Installing TouchGFX

TouchGFX needs a separate installation besides STM32CubeIDE. During this
process, two extra programs should be installed as “TouchGFX Generator”
and “TouchGFXDesigner.” To install TouchGFX Generator, we should open
STM32CubeIDE. Within it, we should enter “Help” and “Manage Embedded
Software Packages” afterward. In the opening window, we should enter the
“STMicroelectronics” tab, expand the “X-CUBE-TOUCHGFX” option, and install
the latest version of TouchGFX Generator. We used the version 4.16.0 while writing
this book.

We can install the TouchGFXDesigner in two different ways. The first option
is via the available “msi” file located at \Users\User_Name\STM32Cube\
Repository\Packs\STMicroelectronics\X-CUBE-TOUCHGFX in our PC.
There should be the installation folder for the recent version which is “4.16.0”
for us. Within this folder, we should locate the “TouchGFX-4.16.0.msi” file
under \4.16.0\Utilities\PC_Software\TouchGFXDesigner. We can install
TouchGFXDesigner via double-clicking on this file. The second option is directly
installing the TouchGFXDesigner from its web site https://support.touchgfx.com/
docs/introduction/installation. We suggest following the first option in installation
for consistency with the TouchGFX Generator.

11.8.2 Setting Up TouchGFX

We should apply necessary settings to use TouchGFX. Therefore, we should first
form a new project as explained in Sect. 3.1.3. However, we should select the
“Targeted Language” as C++ in the project setup. Afterward, we should set the
LTDC. Therefore, we should activate FMC SDRAM, I2C3, SPI5, DMA2D, and
LTDC in STM32CubeIDE as explained in Sect. 9.5.2.1. Then, we should adjust
parameters under the LTDC configuration menu as in Fig. 11.8.

We should also apply the layer settings in Fig. 11.9. To note here, we should start
setting parameters with “Number of Layers: 1 Layer.” Then, we should enable the
“LTDC global interrupt” under the “NVIC Settings” tab as in Fig. 11.10. Then, we

https://support.touchgfx.com/docs/introduction/installation
https://support.touchgfx.com/docs/introduction/installation
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Fig. 11.8 LTDC
configuration menu in
STM32CubeMX: parameter
settings

should activate the CRC peripheral. To do so, we should only check the “Activated”
option under the mode menu which opens up as we select CRC.

Now we are ready to modify the TouchGFX Generator. To do so, we should
first open the “.ioc” file and open “Select Components” under “Software Packs”
within the “Device Configuration Tool” in STM32CubeMX. Then, we should
select TouchGFX Generator. As all these operations are done, a new option
comes under the left “Software Packs” menu of device “Configuration Tool” as
STMicroelectronics.X-CUBE-TOUCHGFX.4.16.0. To note here, the version of
TouchGFX may be different in the future. Hence, the corresponding version will
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Fig. 11.9 LTDC configuration menu in STM32CubeMX: layer settings

show up there. As we press STMicroelectronics.X-CUBE-TOUCHGFX.4.16.0, we
should check the “Graphics Application” checkbox under the mode menu. We
should also configure the TouchGFX as in Fig. 11.11. Finally, we should set the
system clock (HCLK) to 180 MHz and LCD-TFT clock to 6 MHz.

As we save the “.ioc” file, the “main.c” file will be formed. We should next
include the BSP driver files to our project as explained in Sect. 11.5.2. To run the
LCD and touch screen, we should add the following lines to the “main.c” file in
appropriate places.
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Fig. 11.10 LTDC configuration menu: NVIC settings

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_ts.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"
/* USER CODE END Includes */

/* USER CODE BEGIN 2 */
BSP_LCD_Init();
BSP_TS_Init(240, 320);
/* USER CODE END 2 */

As we perform project settings in STM32CubeIDE, we should next focus on the
design step. To do so, we should open the TouchGFX Designer by double-clicking
on the “.part” file under the TouchGFX folder of the project (under project explorer).
Then, the reader should click on the “Generate Code” button on the top right part
of the screen. Codes of an empty GUI will be formed under the STM32CubeIDE
project. To observe them, we should right-click on the project under the project
explorer and press “refresh.” Afterward, we should open the “application.config”
file under TouchGFX folder in “Project Explorer.” If the LCD will be used in
horizontal mode, we should set “layout_rotation: 90.” Otherwise, we should set
“layout_rotation: 0.”

If there will be interactive areas in the GUI and touch screen needs to
be activated, we should add the following code lines to the “/TouchGFX/tar-
get/STM32TouchController.cpp” or “/TouchGFX/target/STM32TouchController
.hpp” files. These additions can be done in the STM32CubeIDE interface.

#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_ts.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_lcd.h"

Besides, the sampleTouch function under the file "/TouchGFX/target/STM32Touch
Controller.cpp" should be modified as follows:
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Fig. 11.11 TouchGFX configuration settings in STM32CubeMX

bool STM32TouchController::sampleTouch(int32_t& x, int32_t& y)
{
/**
* By default sampleTouch returns false,
* return true if a touch has been detected , otherwise false.
*
* Coordinates are passed to the caller by reference by x and y.
*
* This function is called by the TouchGFX framework.
* By default sampleTouch is called every tick, this can be

adjusted by HAL::setTouchSampleRate(int8_t);
*
*/
TS_StateTypeDef state;
BSP_TS_GetState(&state);
if (state.TouchDetected)
{
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x = state.X;
// y = state.Y; // uncomment to use with STM32F429I -DISC1 MB1075C

(green board)
y = 320 - state.Y; // uncomment to use with STM32F429I -DISC1

MB1075E (blue board)
return true;
}
return false;
}

The sampleTouch function is automatically generated. However, its entries are
left to be filled by the user. Hence, different touch screens, each having its own data
acquisition options, can be handled this way. Please note that there are two different
STM32F4 board versions available. Uncomment the corresponding line in the code
to get the correct values. The code we added above resembles the structure under a
loop in our touch screen example in Listing 11.13.

11.8.3 Using TouchGFX

We formed the project in empty form till this step. We will focus on GUI formation
from this point on. To do so, we should open TouchGFX Designer by double-
clicking on the “.part” file located under TouchGFX folder in the project explorer.
The opened empty screen will be as in Fig. 11.12.

We can add components to the GUI screen by clicking on the “+” sign (Add
Widget) from the left side of the window. We can also add more than one screen

Fig. 11.12 TouchGFX Designer interface
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from the screens section if we plan to do so in our application. There are two tabs,
as properties and interactions, on the menu located at the right side of the window.
The properties tab can be used to adjust properties of the added components on
the screen. The interactions tab can be used to set what will be done when the
component is touched.

As we design the GUI, we can click on the “Run Simulator” button on the right
side of the window. This way we can test the GUI and its properties on PC. We
should enter the “Default Image Configuration” menu under the “Config” screen
for the simulator to work properly. Here, we should set the “layout_rotation: 90” if
we will use the display in horizontal form. If we plan to use the display in vertical
form, then we should set it as “layout_rotation: 0.”

We next provide a detailed example on the usage of TouchGFX to form a GUI.
In our example, we form the background image, add a button, and draw circle to
represent an LED. Afterward, we will toggle the LED from the touch screen via
GUI usage. We will provide sufficient detail on these steps. If the reader wants to
learn all the functions and class structures under TouchGFX, he or she can do so by
checking https://support.touchgfx.com/docs/introduction/welcome.

At this step, we assume that a new project has been created as explained in
the previous section. We should also add the BSP driver functions during setup.
Afterward, we should open the Touch Designer. As the first step, we should select
the “screen” from the left side of the Touch Designer menu. Let’s set the screen
“NAME” as “main” from the right side of the window under “Properties” tab. In
order to add a background image, we should open the “+” (Add Widget) menu
from left side of the screen and click on the “IMAGE” option. We should click “+”
from the pop-up menu and select an image from PC. Afterward, we should set the
image “NAME” property as “background_image” in the right side of the screen.
The screen should be as in Fig. 11.13.

As we finalize adding the background image to our GUI, we should press the
“Generate Code” button on the right side of the window. This way, codes of the
GUI and background image will be generated under the STM32CubeIDE project.
To observe them, we may need to refresh the Project Explorer. As we build and
debug the project in STM32CubeIDE, we should see the image as background on
the LCD. We do not need to add any extra code till this time.

The next step in our GUI formation is adding widgets to it. Hence, we switch
back to TouchGFX again. We will specifically add buttons and LEDs to our design.
To do so, press the “+” add widget menu. Then, we should select “button with
label” and add two of them. Afterward, we should select each button from the left
menu. We should press the “Properties” tab. In the right-hand side of the opening
screen, we should name the buttons as “greenLEDToggle” and “redLEDToggle”
in the right “NAME” region, respectively. In the same properties tab, enter strings
“Green LED” and “Red LED” in the “TEXT” region, respectively. Afterward, the
text on our buttons will change. We should also add two circles from the left “Add
Widget” menu by selecting the “+” sign on the left side of the screen. To do so, we
should select “Circle.” Next, we should select each circle and change their “NAME”
property as “greenLEDCircle” and “redLEDCircle,” respectively. We should change

https://support.touchgfx.com/docs/introduction/welcome
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Fig. 11.13 TouchGFX Designer interface: adding background image

the color of these circles from the “IMAGE & COLOR” section as R-0, G-100,
and B-0 and R-100, G-0, and B-0, respectively. This way, we colored the circles
representing our LEDs as green and red, respectively. The screen should be as in
Fig. 11.14. We can press the “Simulator” button on the window to see the final form
of our GUI.

Our next step is adding interactions to our GUI in TouchGFX. To do so, we
should click on the “Interactions” tab. A new menu appears on the right side
of the screen. There is a button named “Add Interaction” there. We should click
on it twice to add two separate interactions. We should click on each interaction
separately and “Button is clicked” as the trigger for each. Then, we should select
“greenLEDToggle” and “redLEDToggle” from the “Choose clicked source” for
each, respectively. We should also select “Call new virtual function” as “Action”
for both. We should set the function names as “greenLEDToggleFunction” and
“redLEDToggleFunction,” respectively. As “Interaction,” we should call these as
“greenLEDToggle” and “redLEDToggle,” respectively. The GUI should be as in
Fig. 11.15.
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Fig. 11.14 TouchGFX Designer interface: adding buttons and circles

As all the mentioned modifications are done in TouchGFX, we should press the
“Generate Code” button on the right side of the screen. Hence, codes of the GUI
will be generated under STM32CubeIDE. We may need to refresh the “Project
Explorer” to observe the generated codes. From this point on, we will start working
in STM32CubeIDE. We should fill in the functions greenLEDToggleFunction
and redLEDToggleFunction. As a reminder, these functions will be called when
the associated buttons are pressed. We will perform these operations on the project
files located in “/TouchGFX/gui/src” and “/TouchGFX/gui/include/gui.”

There will be a folder generated for each screen added to GUI. The folder will
be named by the screen name and suffix “_screen.” Since our screen is named
“main,” our folder will be named as “main_screen.” Within this folder, we should
modify the files “mainView.cpp” and “mainView.hpp.” We should add the lines
#include “stm32f4xx_hal.h” and #include <touchgfx/Color.hpp> to
the file “mainView.hpp.” These lines allow us to reach the HAL library and
reach the Color class to change colors, respectively. We should also add the
functions virtual void greenLEDToggleFunction() and virtual void
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Fig. 11.15 TouchGFX Designer interface: adding interactions

greenLEDToggleFunction() to the class mainView as public method. These are
interaction functions of the buttons added to our GUI.

We should also add private methods to the mainView class as bool
redLEDstatus = false, bool greenLEDstatus = false, uint32_t red
BouncerTime = 0, and uint32_t greenBouncerTime = 0. These will keep
the status of LEDs. They will also keep time to eliminate switch bouncing when the
button is pressed once. Finally, we should add the functions in Listing 11.15
to the “mainView.cpp” file. Here, the objects greenLEDCirclePainter
and redLEDCirclePainter keep the color information of the objects
greenLEDCircle and redLEDCircle, respectively. We can change their color
by the function setColor. Since we set the screen in the RGB565 color format,
we use the same format for the color representation as well. The function
Color::getColorFrom24BitRGB changes the color value from RGB888 to RGB
format of the screen.

Listing 11.15 LED control functions to be added

void mainView::redLEDToggleFunction()
{
if ((HAL_GetTick() - redBouncerTime) > 100)
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{
redLEDStatus = !redLEDStatus;
if (redLEDStatus)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_SET);
redLEDCirclePainter.setColor(Color::getColorFrom24BitRGB(255, 0,

0));
}
else
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_14 , GPIO_PIN_RESET);
redLEDCirclePainter.setColor(Color::getColorFrom24BitRGB(100, 0,

0));
}
redLEDCircle.invalidate();
}
redBouncerTime = HAL_GetTick();
}

void mainView::greenLEDToggleFunction()
{

if ((HAL_GetTick() - greenBouncerTime) > 100)
{
greenLEDStatus = !greenLEDStatus;
if (greenLEDStatus)
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_SET);
greenLEDCirclePainter.setColor(Color::getColorFrom24BitRGB(0,

255, 0));
}
else
{
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_13 , GPIO_PIN_RESET);
greenLEDCirclePainter.setColor(Color::getColorFrom24BitRGB(0,

100, 0));
}
greenLEDCircle.invalidate();
}
greenBouncerTime = HAL_GetTick();
}

In Listing 11.15, there is the invalidate function. It should be called when
any property of the greenLEDCircle or redLEDCircle object has been changed.
Hence, the change can be projected on the screen.

As we debug and run the project in STM32CubeIDE, we should be seeing the
background image, circles representing LEDs, and buttons on the LCD. As we
press a button on the GUI, the corresponding LED will toggle both on the GUI
and STM32F4 board. The reader can benefit from this project to form his or her
GUI for another application.

11.9 Application: Improving the Stand-Alone Remote
Controller via GUI Formation and Touch Screen Usage

We upgrade the stand-alone remote controller unit for our robot vacuum cleaner in
this chapter. Therefore, we represent the physical LEDs and buttons on the second
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STM32F4 board via forming a GUI on its LCD and touch screen. We provided
the equipment list, circuit diagram, detailed explanation of design specifications,
and peripheral unit settings in a separate document in the folder "Chapter11\
EoC_applications" of the accompanying supplementary material. In the same
folder, we also provided the complete C, C++, and MicroPython codes for the
application.

11.10 Summary of the Chapter

The STM32F4 board has an LCD with integrated touch screen on it. Moreover,
STMicroelectronics provides the TouchGFX software to generate professional GUI
to run on this hardware. Therefore, we can benefit from them to form an embedded
system with professional-looking GUI with its associated hardware components.
We considered this topic in this chapter. To do so, we started with the hardware
of the LCD, touch screen, and modules available in the STM32F4 microcontroller
and STM32F4 board to control them. Afterward, we provided ways of setting
up and using the LCD and touch screen modules in C, C++, and MicroPython
languages. Then, we used the TouchGFX software to form professional GUI for
our embedded systems. We also expanded our previously introduced real-world
example by adding LCD and touch screen usage with GUI formation to it as the
end of chapter application.

Problems

11.1. Is the LCD on the STM32F4 board of type emissive or non-emissive?

11.2. Briefly explain the LCD structure (with its layers) on the STM32F4 board.

11.3. What are the digital connection types for LCDs?

11.4. How does a four-wire touch screen work?

11.5. Summarize the hardware in the STM32F4 microcontroller and on the
STM32F4 board to control the LCD and touch screen on the board.

11.6. Take a photo. Form a project to display it on the LCD via using SPI and
LTDC. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython
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11.7. Form a project to display two color bars, each with different color, on the
LCD via using SPI and LTDC. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

11.8. Form a project to display your name on the LCD via using LTDC. Form the
project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed

11.9. Form a project with the following specifications. The C code should count
how many times the touch screen has been pressed till that time. Display the
result on the LCD. Add power management option to your solution such that the
STM32F4 microcontroller waits in an appropriate low power mode when not used.
Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed

11.10. Form a project with the following specifications. The C code should detect
the touched location on the LCD. Display the coordinate of this location on the
LCD. Add power management option to your solution such that the STM32F4
microcontroller waits in an appropriate low power mode when not used. Form the
project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed

11.11. Reconsider Problem 11.6 such that the taken photo is displayed as back-
ground image via TouchGFX.

11.12. Form a project via TouchGFX with the following specifications. There will
be three screens. Add two buttons to the first screen. Turn on screen two and three
when the first and second buttons are pressed, respectively. The second screen will
have the same characteristics as the one in Problem 11.9. The third screen will have
the same characteristics as the one in Problem 11.10. Screens two and three should
also have buttons such that when pressed, the first screen becomes active.
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12Introduction to Digital Signal Processing

12.1 About Digital Signals

We introduced analog and digital values and signals in Chap. 7. An analog signal can
be taken as a function of dependent variable. For example, when we measure room
temperature by an analog sensor through time, in fact we form a function. There
are infinite number of values in this function. Each value has infinite precision.
In Chap. 7, we noted that such values cannot be processed by a digital system.
Therefore, we introduced digital values. Let’s focus on digital signals formed by
such digital values.

12.1.1 Mathematical Definition of the Digital Signal

We know from Chap. 7 that analog values cannot be processed in an embedded
system. Hence, they should be sampled and quantized to obtain the corresponding
digital values. As a result, we can process them in the embedded system. A digital
signal is formed by digital values ordered by an index. If we think about the room
temperature as the analog signal, we can apply analog to digital conversion in certain
time instants and obtain its quantized samples. As we sort them in time, we can form
the corresponding digital signal.

In mathematical terms, the digital signal is represented by an array with index
value. Since we sort the samples, we will have the first, second, third, and following
elements. In other words, our index should always be an integer value. Otherwise,
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it does not make sense to have the 1.5th sample. As a result, we can represent the
digital signal by an array x[n], n being the integer index value.

12.1.2 Representing the Digital Signal in an Embedded System

Array representation of the digital signal can be directly used in the embedded
system. To do so, we can benefit from the corresponding array definition in C, C++,
and Python languages. Let’s consider them next.

We can handle the C and C++ array representations together since they have
the same array structure. In C and C++ languages, we can form an array of integer
values by the definition int x[N], N being the number of array elements. From the
digital signal processing perspective, we will have a digital signal with N integer
values. The array index always starts with value zero. We can reach the nth value
of our digital signal by x[n]. We can also have an array formed by float entries.
Hence, we can store signal values with integer and fractional parts. Let’s give a
simple digital signal example represented in C language. Assume that our digital
signal is formed by float entries float x[4]={0, 0.1, 0.2, 0.3}. Here, we
can reach the first element of the array by x[1].

We can represent a digital signal in Python language as a list. To do so, we should
only form the list entries. As an example, we can form the digital signal as x=[0,
0.1, 0.2, 0.3]. We can reach the first element of the list by x[1]. In Python, list
entries start with the zeroth element. We can use the matplotlib library to plot the
constructed digital signal in Python language.

12.1.3 Forming an Actual Digital Signal from the STM32F4 Board

Digital signals we will consider throughout the book will most of the times originate
from a sensor having either analog or digital output. If the sensor output is analog, it
can be converted to digital form by the ADC module. If the sensor output is digital,
it can be obtained using digital communication modules such as I2C or SPI. We
provide one such actual signal in this section. There is a three-axis gyroscope on the
STM32F4 board which can be used as a sensor. To be more specific, the gyroscope
IC on the STM32F4 boards (having version lower than E) is L3GD20. For the boards
with version E or higher, the gyroscope IC is I3G4250D. Both gyroscopes have
I2C/SPI digital output interface. We can obtain their values at certain time instants
to form a digital signal. To do so, we provide the codes in C, C++, and MicroPython
languages next.

12.1.3.1 Data Acquisition via C Language
In order to reach and acquire data from the L3GD20 or I3G4250D three-axis
gyroscope in C language, we should first create a project under STM32CubeIDE by
initializing all peripherals with their default mode. Hence, all pin assignments for
the sensor are realized automatically. We should use board support package (BSP)
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driver functions to reach the gyroscope. Only driver functions related to the L3GD20
IC are defined in BSP. However, the I3G4250D IC has the same register set as with
the L3GD20 IC. Hence, the same driver functions can be used for it with minor
modification.

We will benefit from the BSP drivers provided by STMicroelectronics to use the
gyroscope as a sensor. To do so, we should first open a new project and press the
“.ioc” file to open the “Device Configuration Tool” in STM32CubeMX. Then, we
should follow the steps given in Sect. 9.5.2.1. Finally, we should add the below C
code script to the appropriate place in the “main.c” file.

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_gyroscope.h"
/* USER CODE END Includes */

As the configuration is done, BSP driver functions related to the L3GD20 three-
axis gyroscope are ready to be used. We will use the function BSP_GYRO_Init to
initialize the sensor. We can read the ID of the gyroscope (212) by the function
BSP_GYRO_ReadID. Through it, we can check whether the SPI communication
has been established between the STM32F4 microcontroller and gyroscope. This
operation also indicates that the gyroscope is ready to be used. Finally, we can use
the function BSP_GYRO_GetXYZ(float *xyz) to acquire the gyroscope output as
x, y, and z angular rates in mdps (millidegrees per second) and save the result to the
xyz buffer.

In order to use the same setup for the I3G4250D three-axis gyroscope,
go to the file “l3gd20.h” and change the code lines #define I_AM_L3GD20
((uint8_t)0xD4) and #define I_AM_L3GD20_TR ((uint8_t)0xD5) with
#define I_AM_L3GD20 ((uint8_t)0xD3) and #define I_AM_L3GD20_TR
((uint8_t)0xD4), respectively. Afterward, the same BSP functions can be used
for the I3G4250D IC. Only the function BSP_GYRO_ReadID returns 211 instead of
212.

We provide a sample code to acquire a digital signal from the gyroscope in
Listing 12.1. Here, the TIM2 timer module is used to obtain sensor output for 1000
samples in 20 s. Hence, the sampling frequency of the acquired digital signal is
50 Hz. There is a function SERIAL_dataSend in the code. This function is used
to send the obtained data to PC. Explanation of this function and receiving/sending
data at PC side will be handled in Sect. 12.2. We plot the obtained result in Fig. 12.1.

Listing 12.1 Acquiring the gyroscope data, the C code

/* USER CODE BEGIN Includes */
#include "STM32F429I -Discovery/stm32f429i_discovery.h"
#include "STM32F429I -Discovery/stm32f429i_discovery_gyroscope.h"
#include "serialData.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
uint8_t readID;
float xyz[3];
float xArr[1000];
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int cnt = 0;
uint8_t sendDataFlag = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM2)
{
BSP_GYRO_GetXYZ(xyz);
if (cnt < 1000)
{
xArr[cnt++] = xyz[0] / 1000;
}
else
{
sendDataFlag = 1;
HAL_TIM_Base_Stop_IT(&htim2);
}
}
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
BSP_GYRO_Init();
readID = BSP_GYRO_ReadID();
HAL_TIM_Base_Start_IT(&htim2);
/* USER CODE END 2 */

/* USER CODE BEGIN WHILE */
while (1)
{
if (sendDataFlag == 1)
{
SERIAL_dataSend((uint8_t *)xArr, 4000, 3);
sendDataFlag = 0;
}
/* USER CODE END WHILE */

12.1.3.2 Data Acquisition via C++ Language
We can also acquire data from the gyroscope to form a digital signal in C++
language. To do so, we should add the BSP driver functions to our project
with the first method described in Sect. 9.5.2.2. Then, we should add the gyro
wrapper library located at http://os.mbed.com/teams/Embedded-System-Design-
with-ARM-Cortex-M/code/GYRO_DISCO_F429ZI/ to our project. As the “Next”
button is pressed, the interface asks for “Branch” or “Tag.” We can keep the default
value. Then, we can use the BSP driver functions by adding the code line #include
“GYRO_DISCO_F429ZI.h” to our main file.

BSP driver functions in the gyro wrapper library are formed as class members.
Therefore, all the functions in previous section can be used by discarding the prefix
BSP_GYRO_. The reader should adjust the necessary code lines for the specific
gyroscope IC as explained in the previous section. We provide the C++ version of
the code in Listing 12.1 now in Listing 12.2. There is a function send in the code.
This function is used to send the obtained data to PC. Explanation of this function

http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/GYRO_DISCO_F429ZI/
http://os.mbed.com/teams/Embedded-System-Design-with-ARM-Cortex-M/code/GYRO_DISCO_F429ZI/
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Fig. 12.1 Digital gyroscope signal for 1000 samples in 20 s

and receiving/sending data at PC side will be handled in Sect. 12.2. The reader can
run the code to obtain the gyroscope output data.

Listing 12.2 Acquiring the gyroscope data, the C++ code

#include "mbed.h"
#include "GYRO_DISCO_F429ZI.h"
#include "serialData.hpp"

uint8_t readID;
Ticker gyroTicker;
float xyz[3];
float xArr[1000];
int cnt = 0;
uint8_t sendDataFlag = 0;

GYRO_DISCO_F429ZI gyro;
SERIALDATA serialData(USBTX, USBRX, 2000000);

void gyro_sample()
{
gyro.GetXYZ(xyz);
if (cnt < 1000)
{
xArr[cnt++] = xyz[0] / 1000;
}
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else
{
gyroTicker.detach();
sendDataFlag = 1;
}
}

int main()
{
gyro.Init();
readID = gyro.ReadID();
gyroTicker.attach(&gyro_sample , 20ms);

while (true){
if (sendDataFlag == 1)
{
serialData.send((uint8_t *)xArr, 4000, 3);
sendDataFlag = 0;
}
}
}

12.1.3.3 Data Acquisition via MicroPython
We can also acquire data from the gyroscope to form a digital signal in MicroPython.
MicroPython has no class to perform Gyro operations as in the previous section.
Therefore, we created a gyro class in our custom MicroPython firmware. The reader
can find this custom MicroPython firmware in the accompanying book web site.
The gyro module can be created and initialized using the function init(). All gyro
module configurations are done automatically in this function. After calling this
function, the gyroscope module will be ready to be used. The function read_id()
can be used to obtain the ID of the gyroscope. Functions get_x(), get_y(), and
get_z() can be used to acquire the gyroscope output as x, y, and z angular rates,
respectively. We provide the MicroPython version of the code in Listing 12.1 now
in Listing 12.3. There is a function send in the code. This function is used to send
the obtained data to PC. Explanation of this function and receiving/sending data at
PC side will be handled in Sect. 12.2. The reader can run the code to obtain the
gyroscope output data.

Listing 12.3 Acquiring the gyroscope data, the MicroPython code

import pyb
import gyro
import serialData

sampleFlag = 0
sendDataFlag = 0

def sampleFn(timer):
global sampleFlag
sampleFlag = 1

def main():
global sampleFlag , sendDataFlag

xArr = []
xArr = [0.0 for i in range(1000)]
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cnt = 0
gyro.init()
serialData.init()
readID = gyro.read_id()
print(readID)
timer1 = pyb.Timer(1, prescaler=59, period=55999, mode=pyb.

Timer.UP)
timer1.callback(sampleFn)
while True:

if sampleFlag == 1:
sampleFlag = 0
if cnt < 1000:

xArr[cnt] = gyro.get_x()/1000
cnt = cnt + 1

else:
timer1.deinit()
sendDataFlag = 1

if sendDataFlag == 1:
serialData.send(xArr, 4000, 3)
sendDataFlag = 0

main()

12.2 Transferring the Digital Signal Between the PC and
STM32F4Microcontroller

Although it is natural to process the acquired digital signal on an embedded system
(such as the STM32F4 microcontroller), it is not easy to observe the signal there.
Therefore, it may be beneficiary to transfer the acquired digital signal from the
STM32F4 microcontroller to PC. Likewise, we may need to process a predefined
signal on the microcontroller. For such cases, we can prepare the digital signal in
PC and then transfer it to the STM32F4 microcontroller. We will handle both cases
in this section.

12.2.1 Setup in the STM32F4Microcontroller Side

We can use UART communication to transfer data between the STM32F4 micro-
controller and PC. Therefore, we can benefit from the techniques in Chap. 8. We
next provide template C, C++, and MicroPython codes for this purpose. These
codes can be used for transferring the digital signal between the PC and STM32F4
microcontroller.

12.2.1.1 Setup via C Language
We formed the “data transfer library” to set up and transfer data between the
PC and STM32F4 microcontroller in C language. We provide this library in the
accompanying book web site. In order to use it, the reader should add the files
“serialData.c” and “serialData.h” to the “project->Core->Src” and “project->Core-
>Inc” folders of the active STM32CubeIDE project, respectively.
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Our “data transfer library” has two functions as SERIAL_dataReceive and
SERIAL_dataSend. The function SERIAL_dataReceive receives data coming
from PC and stores it in RAM of the STM32F4 microcontroller. To do so,
this function first sends a request to PC to receive data. Then, the STM32F4
microcontroller starts receiving data from PC. The function SERIAL_dataSend
sends data from the STM32F4 microcontroller to PC. To do so, it first sends a
request to PC to send data. Then, the STM32F4 microcontroller starts sending data
to PC. We provide detailed information on these functions next.

void SERIAL_dataReceive(uint8_t *pData, uint16_t Size, uint8_t
Type)

/*
pData: pointer to the data array to be received
Size: number of bytes to be received
Type: type of the data array. Enter 0 for uint8_t, 1 for uint16_t

, 2 for uint32_t , and 3 for float data.
*/

void SERIAL_dataSend(uint8_t *pData, uint16_t Size, uint8_t Type
)

/*
pData: pointer to the data array to be sent
Size: number of bytes to be sent
*/

We will use UART communication as explained in Chap. 8 to use the “data
transfer library” functions for data transfer. Here, the USART1 module will be used
via pins PA9 and PA10. Therefore, they should be configured in UART mode with
full-duplex, eight-bit, no parity, one stop bit mode. The baud rate should be set to
2 Mbits/s. Pins PA9 and PA10 should also have “maximum output speed” settings
as “very high” under GPIO properties.

12.2.1.2 Setup via C++ Language
We also formed the “data transfer library” to set up and transfer data between the
PC and STM32F4 microcontroller in C++ language. This library is available in the
accompanying book web site. In order to use this library, we should add the files
“serialData.cpp” and “serialData.hpp” to the active project folder. The “data transfer
library” has the class SERIALDATA which has three functions as SERIALDATA,
receive, and send.

The class SERIALDATA can also be used as the constructor function. UART
transmit-receive pin names and desired baud rate will be input for this function.
The function receive receives data coming from PC and stores it to the RAM of
the STM32F4 microcontroller. To do so, this function first sends a request to PC
to receive data. Then, the STM32F4 microcontroller starts receiving data from PC.
The function send sends the data from the STM32F4 microcontroller to PC. To
do so, this function first sends a request to PC to send data. Then, the STM32F4
microcontroller starts sending data to PC. We provide detailed information on the
SERIALDATA class and its functions next.
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SERIALDATA(PinName p_tx, PinName p_rx, int baudrate);
/*

p_tx: microcontroller pin name for UART transmit pin
p_rx: microcontroller pin name for UART receive pin
baudrate: baudrate , for UART communication.
*/

void receive(uint8_t *pData, uint16_t Size, uint8_t Type);
/*

pData: pointer to the data array to be received
Size: number of bytes to be received
Type: type of the data array. Enter 0 for uint8_t, 1 for uint16_t

, 2 for uint32_t , and 3 for float data.
*/

void send(uint8_t *pData, uint16_t Size, uint8_t Type);
/*

pData: pointer to the data array to be sent
Size: number of bytes to be sent
*/

12.2.1.3 Setup via MicroPython
We also formed the “data transfer library” to set up and transfer data between the
PC and STM32F4 microcontroller in MicroPython. This library has been added to
the custom MicroPython firmware available in the accompanying book web site.
In order to use it, we should add the import serialData line to the “main.py”
file and initialize the serialData module using init(). The UART5 module is
enabled with full-duplex, eight-bit, no parity, one stop bit mode with this function.
The baud rate is set to 921,600 bits/s. Pins PD2 and PC12 are set as Rx and Tx pins,
respectively.

The function receive receives data coming from PC and stores it to the RAM
of the STM32F4 microcontroller. To do so, this function first sends a request to
PC to receive data. Then, the STM32F4 microcontroller starts receiving data from
PC. The function send sends data from the STM32F4 microcontroller to PC. To
do so, this function first sends a request to PC to send data. Then, the STM32F4
microcontroller starts sending data to PC. We provide detailed information on the
serialData functions next.

receive(pData, Size, Type);
/*

pData: data array to be received
Size: number of bytes to be received
Type: type of the data array. Enter 0 for uint8_t, 1 for uint16_t

, 2 for uint32_t , and 3 for float data.
*/

send(pData, Size, Type);
/*

pData: data array to be sent
Size: number of bytes to be sent
*/
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12.2.2 Setup in the PC Side

Digital signals can be represented and processed easily in Python on PC. Besides,
there are several libraries in Python to process the digital signal. Therefore, we
pick Python as the digital signal processing medium on PC. Since the STM32F4
microcontroller sends or receives data via UART communication, we should set the
UART communication option in Python as well. Therefore, the pyserial library
should be installed to PC by executing the command pip install pyserial at
the command window. At this step, we need the COM port in which the STM32F4
board is connected to. Hence, we should check “Device Manager -> Ports (COM
& LPT)” under the Windows operating system. There should be a device listed
as “STMicroelectronics STLink Virtual COM Port . . . .” Please note that the same
settings should be done for a PC with another operating system such as Linux.
Therefore, we kindly ask the reader to check his or her operating system working
principles for this purpose.

We formed the “PC Data Transfer Library” in Python to simplify data transfer
between the PC and STM32F4 microcontroller. We provide this library as a file in
the accompanying book web site. This library contains four functions as follows.
The function init gets the COM port name as “COMx” and creates the serial
communication object. The function poll_transfer_request halts execution
until the transfer request arrives. This transfer request contains information about
transfer direction, transfer size as bytes, and data type. The function send_data
sends data from PC to the STM32F4 microcontroller according to its size and
data type information. The function read_data transfers data from the STM32F4
microcontroller to PC according to its size and data type information.

The digital signal obtained from the gyroscope on the STM32F4 board in
Sect. 12.1.3 can be transferred to PC and displayed there via our “PC Data Transfer
Library.” We provide the complete code for this purpose in Listing 12.4. This code
first imports PC_Data_Transfer_Library as serialData. As we run the code on
PC, it waits for a request from the STM32F4 microcontroller. As the request comes
to receive data, poll_transfer_request returns DATA_WRITE, and the received
data is saved to receiveArray.

Listing 12.4 Data transfer code between the PC and STM32F4 microcontroller

import PC_Data_Transfer_Library as serialData

dataArray = [1.5 for _i in range(5000)]
serialPort = ’COM8’
serialData.init(serialPort)

while 1:
reqType = serialData.poll_transfer_request()
if (reqType == serialData.DATA_WRITE):

receiveArray = serialData.read_data()
elif (reqType == serialData.DATA_READ):

serialData.send_data(dataArray)
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The code in Listing 12.4 can also be used to send data to the STM32F4
microcontroller. Within the code, we send data in dataArray with size 20,000 (for
5000 float numbers) after a request comes from the STM32F4 microcontroller. As
a side note, the code to be executed in the STM32F4 microcontroller can be written
in C, C++, or MicroPython language. Since we are using UART communication in
all these, the PC side is not affected by the code running in the microcontroller.

12.3 About Digital Systems

Majority of the work in digital signal processing is based on modifying a given input
signal. This can be done by digital systems. Hence, we will focus on them in this
section.

12.3.1 Mathematical Representation of the Digital System

In mathematical terms, we can define a digital system as an operation applied on
the input signal. Output of this operation will be another signal. As an example, our
digital system may multiply the input signal and feed it to output. We can represent
this system as y[n] = 3x[n] where x[n] and y[n] represent the input and output
digital signals, respectively. This example indicates that if we know the input-output
relation of the system, we can implement it in code form.

We may want to design a digital system for a specific application. The most
popular usage of this option is filtering. Here, the designed filter eliminates or
enhances some components in the input signal. We will provide one such example in
Sect. 12.5. To note here, we can call the system as filter in digital signal processing.
Therefore, we will use system and filter interchangeably.

12.3.2 Linear and Time-Invariant Systems

One digital system type deserves special consideration. This system does not change
its characteristics in time. Hence, we call it as time-invariant. The system also has
the linearity property. Hence, it will have the same output for the input signal or sum
of the signal parts. Besides, multiplying the input signal will result in the multiplied
output signal. We call such systems as linear and time-invariant (LTI). For more
information on LTI systems, please see [1].

The importance of LTI systems is that their characteristics can be represented
by their impulse response. In mathematical terms, this response can be obtained
by feeding an impulse signal to the system and obtaining the corresponding output
signal. The impulse response of an LTI system is represented as h[n] most of the
times. In practice, the impulse response of the system can be obtained by other
means such as system identification. For more information on this topic, please see
[2].
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If the impulse response of the LTI system is available, then we can form its
input-output relationship by the convolution sum. Assume that we have a system
which does not need future values to calculate the present output value. Then, the
convolution sum can be represented as

y[n] =
−∞∑
k=0

h[k]x[n − k] (12.1)

We can represent the convolution sum as an operator between the input signal and
the impulse response of the system as y[n] = x[n] ∗ h[n].

As can be seen in Eq. 12.1, the convolution sum only needs multiplication and
addition operations. However, there are infinite number of operations to calculate
each output value. Hence, it is not possible to directly implement the convolution
sum in its present form on an embedded system.

There are two LTI system types based on their impulse response. If the impulse
response of the system is of infinite length, then we call it infinite impulse response
(IIR) filter. If the response is of finite length, then we call it finite impulse response
(FIR) filter.

Based on its definition, input-output relation of the FIR filter becomes

y[n] =
K−1∑
k=0

h[k]x[n − k] (12.2)

As can be seen in Eq. 12.2, there are finite number of multiplication and addition
operations. Hence, the convolution sum can be implemented on an embedded
system for FIR filters.

The convolution sum will consist of infinite number of operations for IIR filters.
Therefore, it is not possible to directly implement the filter on an embedded system.
Instead, difference equation of the filter can be obtained. The generic difference
equation representation between the input and output of an IIR filter is

y[n]+a[1]y[n−1]+· · ·+a[L−1]y[n−L+1] = b[0]x[n]+· · ·+b[K−1]x[n−K+1]
(12.3)

where the difference equation coefficients a[l] and b[k] can be derived from impulse
response of the IIR filter. For more information on this topic, please see [1].

12.3.3 Representing the Digital System in an Embedded System

If we know the input-output relation of a digital system, then we can implement it
in code form on an embedded system. Moreover, we can implement LTI systems
based on their structured input-output relation. We provide the pseudocode to form
the input-output relation of FIR filters next.
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y is the output array with size length N
x is the input array
h is the FIR coefficient array with length K

for(n = 0 to N){
sum = 0
for(k = 0 to K){
if(k <(n+1)){
sum += h[k] * x[n-k]
y[n] = sum
}}}

Implementing an IIR filter requires its difference equation representation.
Assume that we have this representation. Then, we can use the below pseudocode
to implement the IIR filter:

y is the output array with size length N
x is the input array
b is the feedforward IIR coefficient array with length K
a is the feedback IIR coefficient array with length L

for(n = 0 to N){
sum = 0
for(k = 0 to K){
if(k <(n+1)){
sum += b[k] * x[n-k]
}}
for(l = 1 to L){
if(l <(n+1)){
sum -= a[l] * y[n-l]
}}
y[n] = sum
}

12.4 Digital Signals and LTI Systems in Complex Domain

There are two widely used complex domain representations for digital signals and
LTI systems. These are the z-transform and discrete-time Fourier transform (DTFT).
Through these, we can analyze characteristics of the signal or system at hand in
complex domain.

12.4.1 The z-Transform

We can obtain the z-transform of a signal x[n] by the infinite sum

X(z) =
∞∑

n=−∞
x[n]z−n (12.4)

where z = re−jω. Here, r is the radius and ω is the angle term as polar coordinate
representation of the complex number.
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z-Transform is especially useful for representing digital LTI systems. Here,
impulse response of the system is obtained in complex domain as

H(z) =
∞∑

n=−∞
h[n]z−n (12.5)

Through H(z), we can obtain valuable information about the system, such as its
stability [2]. H(z) can also be used in implementing IIR filters.

Convolution sum in time domain can be represented as multiplication in complex
domain. In other words, we have y[n] = x[n] ∗ h[n] ⇔ Y (z) = X(z)H(z). This
allows simplifying the convolution sum operation as multiplication in complex z-
domain.

There is also the inverse z-transform to obtain time-domain representation of
the signal from its complex domain representation. This way, calculations can be
performed in simplified form in z-domain. Then, the result can be transformed
back to time domain again. For more information on the inverse z-transform, please
see [2].

12.4.2 Discrete-Time Fourier Transform

Frequency domain representation is more important in digital signal processing.
Hence, we can fix the radius term as r = 1 in Eq. 12.4 and obtain the DTFT. As a
result, DTFT of a digital signal x[n] becomes

X(ejω) =
∞∑

n=−∞
x[n]e−jωn (12.6)

As can be seen in Eq. 12.6, the signal x[n] is represented in complex domain with
respect to its frequency component ω.

We can represent the convolution sum operation by DTFT as

y[n] = x[n] ∗ h[n] ⇔ Y (ejω) = X(ejω)H(ejω) (12.7)

Equation 12.7 is the defining formula for filtering in frequency domain. Hence, we
can design a filter with DTFT representation H(ejω) and filter out the required
frequency components in the input signal.

Although frequency domain representation of the signal by DTFT is useful, it
cannot be used directly in a digital system since X(ejω) is a complex and continuous
function of the frequency term ω. Therefore, discrete Fourier transform (DFT) has
been introduced. We will not implement DFT in this book since it requires heavy
mathematical calculations. Instead, we will focus on its modified version called fast
Fourier transform (FFT) which is more suitable to be implemented on embedded
systems.

We can benefit from the CMSIS DSP library on STM32F4 microcontroller
to calculate FFT of a given signal in an STM32CubeIDE project. To do so,
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Fig. 12.2 CMSIS configuration in the “Software Packs Component Selector” window

open STM32CubeMX window and press “Alt+O.” In the opening “Software
Packs Component Selector” window, select “CMSIS” and select “CMSIS DSP” as
“Library” as in Fig. 12.2. Then, click “Software Packs” from the left side of “Pinout
& Configuration” window. Click “ARM.CMSIS.version” and enable “CMSIS
DSP” checkbox from the opening “ARM.CMSIS.version Mode and Configuration”
window.

We should add the precompiled CMSIS library files to our project.
To do so, create a “Lib” folder under your project folder. Then, go to
“STM32Cube/Repository/Packs/ARM/CMSIS/version/CMSIS/DSP/Lib/GCC,” and
copy the “libarm_cortexM4lf_math.a” lib file to the created “Lib” folder. Finally,
right-click on your project, and select “Properties.” In the opening window, go to
“C/C++ General” and select “Paths and Symbols.” In the “Libraries” subwindow,
click “Add” and type “arm_cortexM4lf_math.” In the “Library Paths” subwindow,
click “Add” and type “/project/Lib.” Now, CMSIS DSP library functions are ready
to be used in your project.

Let’s consider the C code given in Listing 12.5. In this code, an 8 Hz sinusoidal
signal is sampled with 1024 Hz, and obtained digital signal is stored in the array
arr. Here, we use the CMSIS function arm_sin_f32 to create the sinusoidal
signal. It can be seen that this signal only contains real data. Hence, we will use
the real FFT function of the CMSIS library named arm_rfft_fast_f32. This
function uses a special struct arm_rfft_fast_instance_f32 which contains
information about the FFT process. We can initialize this structure using the function
arm_rfft_fast_init_f32 with the desired FFT size which should be in power of
two. Other inputs for the function arm_rfft_fast_f32 are the array containing
the input signal, the array to save the FFT result, and the inverse FFT flag. If the
inverse FFT flag is set to 0, normal FFT operation is performed. If it is set to 1,
inverse FFT operation is performed. Finally, the function arm_cmplx_mag_f32 is
used to obtain FFT magnitude is given in Fig. 12.3.
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Listing 12.5 Obtaining FFT of a signal using CMSIS DSP library

/* USER CODE BEGIN Includes */
#include "arm_math.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
int i;
float arr[1024];
float arr2[1024];
float arr3[512];
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
for (i = 0; i < 1024; i++)
{
arr[i] = arm_sin_f32(2 * PI * i * 8 / 1024) + 5;
}
arm_rfft_fast_instance_f32 S;
arm_rfft_fast_init_f32(&S, 1024);
arm_rfft_fast_f32(&S, arr, arr2, 0);
arm_cmplx_mag_f32(arr2, arr3, 512);
/* USER CODE END 2 */
}

Fig. 12.3 FFT magnitude of 8 Hz sinusoidal signal with 1024 Hz sampling frequency
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12.5 Processing Analog Audio Signals on the STM32F4
Microcontroller

We consider an end-to-end digital signal processing system in this section. As
a representative example, we pick the equalizer composed of several filters. In
implementation, we acquire an analog signal and process it on the STM32F4
microcontroller. Then, we feed the processed signal to output in analog form.

12.5.1 Acquiring the Audio Signal

Our processing of the analog signal on the STM32F4 microcontroller (as the
embedded system) starts with its acquisition. Therefore, we should first focus on
the microphone circuitry which converts the audio signal to electrical voltage form.
We will use the Adafruit SPW2430 microphone breakout board for this purpose.
SPW2430 is a small micro-electromechanical system (MEMS) microphone which
can operate within 100–10,000 Hz frequency range.

Before explaining how an audio signal is obtained using the SPW2430 micro-
phone and STM32F4 microcontroller, we should provide a brief information about
working principles of a generic MEMS microphone. Block diagram of a typical
MEMS microphone is as in Fig. 12.4. As can be seen in this figure, the MEMS
microphone consists of an application-specific integrated circuit (ASIC), MEMS
sensor, and front chamber constructed by a mechanical cover. There is a sound inlet
at this mechanical cover which allows sound waves to enter the front chamber.

The MEMS sensor in the microphone is basically a silicon capacitor with two
plates. The plate in contact with front chamber is fixed and has acoustic holes in
which sound waves move through. The plate in contact with the back chamber is
flexible and moves according to the air pressure difference between the front and
back chambers. This movement changes the capacitance between plates. The ASIC
converts this change to the corresponding electrical voltage. This voltage should be
amplified in order to form a useful signal. This amplification process is realized by
a separate semiconductor die which works as an audio amplifier. In analog MEMS

Fig. 12.4 Block diagram of a typical MEMS microphone
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microphones, like the SPW2430, this amplified signal is directly fed to output. As
we convert the audio signal to electrical form, we can feed it to the ADC module of
the STM32F4 microcontroller to obtain its digitized version.

12.5.2 Forming an Equalizer by Digital Filters

We can think of an equalizer as the combination of band-pass filters each passing
signals within certain frequency range. We can apply amplification to each filter
output and sum the amplified signals. As a result, we will be applying different
weights to different frequency components of the signal.

We will first design an IIR notch filter-based equalizer. Numerator and denom-
inator coefficients of the notch filter, as given in Sect. 12.3.3, can be calculated
as b[0] = 1 + α ∗ A, b[1] = −2 ∗ cos(w), b[2] = 1 − α ∗ A, a[0] = 1 + α/A,
a[1] = −2∗cos(w), and a[2] = 1−α/A. Here, the constant A, α, and w parameters
can be calculated as A = 10g/40, w = 2 ∗ pi ∗ f c/f s, and α = sin(w)/(2 ∗ Q)

where g is the gain of the filter in dB, f c is the center resonant frequency in Hz,
f s is the sampling frequency in Hz, and Q is the quality factor of the filter which is
center resonant frequency.

We provide a sample Python code on designing a five-band equalizer using notch
filters in Listing 12.6. Here f c for equalizer bands are selected as 100, 300, 1000,
3000, and 10,000 Hz. f s is selected as 48,000 Hz. Q of the filters is selected as 1.

Listing 12.6 Python code for designing a five-band equalizer using notch filters

from math import pow, pi, cos, sin

def NotchFilter(fc, Q, gain, fs):
coeffs = []
A = pow(10, gain/40)
w = 2*pi*fc/fs
sinw = sin(w)
cosw = cos(w)
alpha = sinw/(2*Q)
b0 = 1 + alpha * A
b1 = -2 * cosw
b2 = 1 - alpha * A
a0 = 1 + alpha / A
a1 = -2 * cosw
a2 = 1 - alpha / A
coeffs.append(b0 / a0)
coeffs.append(b1 / a0)
coeffs.append(b2 / a0)
coeffs.append(a1 / a0)
coeffs.append(a2 / a0)
return coeffs

def NotchFilterBandDesign(fc, Q, fs):
coeffs = []
for _i in range(25):

coeffs.append(NotchFilter(fc, Q, 12-_i, fs))
name = str(fc)
name += "HzFilter.h"
file = open(name, ’w’)
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file.write("float ")
file.write("Filter")
file.write(str(fc))
file.write("[125] = {")
file.write("\n")
for x in range(len(coeffs)):

for y in range(5):
file.write(str(coeffs[x][y]))
file.write(", ")

file.write("\n")
file.write("};")
file.close()
return coeffs

def main():
NotchFilterBandDesign(100, 1, 48000)
NotchFilterBandDesign(300, 1, 48000)
NotchFilterBandDesign(1000, 1, 48000)
NotchFilterBandDesign(3000, 1, 48000)
NotchFilterBandDesign(10000, 1, 48000)

main()

When we execute the Python code in Listing 12.6 on PC, it generates filters for
each band for different gain values. These gains are 12, 11, . . ., −11, and −12 dB.
For each filter, there are five filter coefficients as b[0]/a[0], b[1]/a[0], b[2]/a[0],
a[1]/a[0], and a[2]/a[0]. Obtained filter coefficients are saved in a header file in a
ready-to-use C format.

We can also benefit from the Python SciPy library on PC to design
band-pass filters for our equalizer. To do so, we can import the signal
library under SciPy. Then, we can use the function iirfilter(N, Wn,
rp=None, rs=None, btype=’band’, analog=False, ftype=’butter’,
output=’ba’, fs=None) to design the desired band-pass filter. Here, N is the
filter order. Wn gives frequency information about critical frequencies. This is a
single cutoff frequency for low- and high-pass filters. For band-pass filter, this is
a length two array with band cutoff frequencies. rp is the maximum ripple as dB
in the pass band for Chebyshev and elliptic filters. rs is the minimum attenuation
as dB in the stop band for Chebyshev and elliptic filters. btype is the filter type
as ’bandpass’, ’lowpass’, ’highpass’, or ’bandstop’. analog is used to
design analog or digital filter by selecting 0 or 1, respectively. ftype is the IIR
filter design type as ’butter’ for Butterworth, ’cheby1’ for Chebyshev type
1, ’cheby2’ for Chebyshev type 2, ’ellip’ for Cauer/elliptic, or ’bessel’ for
Bessel/Thomson. output is the filter output formed as ’sos’ for second-order
sections, ’ba’ numerator/denominator, or ’zpk’ for pole/zero type. fs is the
sampling frequency of the digital filter.

We provide a sample Python code for designing a five-band equalizer using the
signal library in Listing 12.7. Here, frequencies for equalizer bands are selected
between 20 and 80 Hz for the first band, 80 and 300 Hz for the second band, 300
and 1200 Hz for the third band, 1200 and 5000 Hz for the fourth band, and 5000
and 20,000 Hz for the fifth band. Sampling frequency is selected as 48,000 Hz.
Gain of these filters will be adjusted in the microcontroller by multiplying output
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of the bands by changing variables. As a result, this approach generates additional
multiplication for each band. As in the notch filter case, obtained filter coefficients
are saved in a header file in a ready-to-use C format.

Listing 12.7 Python code for designing a five-band equalizer using the signal library

from scipy import signal
import numpy as np
import matplotlib.pyplot as plt

sos1 = signal.iirfilter(2, [20, 80], rs=20, btype=’band’,
analog=False, ftype=’cheby2’, fs=48000,
output=’sos’)

sos2 = signal.iirfilter(2, [80, 300], rs=20, btype=’band’,
analog=False, ftype=’cheby2’, fs=48000,
output=’sos’)

sos3 = signal.iirfilter(2, [300, 1200], rs=20, btype=’band’,
analog=False, ftype=’cheby2’, fs=48000,
output=’sos’)

sos4 = signal.iirfilter(2, [1200, 5000], rs=20, btype=’band’,
analog=False, ftype=’cheby2’, fs=48000,
output=’sos’)

sos5 = signal.iirfilter(2, [5000, 20000], rs=20, btype=’band’,
analog=False, ftype=’cheby2’, fs=48000,
output=’sos’)

w1, h1 = signal.sosfreqz(sos1, 48000, fs=48000)
w2, h2 = signal.sosfreqz(sos2, 48000, fs=48000)
w3, h3 = signal.sosfreqz(sos3, 48000, fs=48000)
w4, h4 = signal.sosfreqz(sos4, 48000, fs=48000)
w5, h5 = signal.sosfreqz(sos5, 48000, fs=48000)

b1, a1 = signal.sos2tf(sos1)
b2, a2 = signal.sos2tf(sos2)
b3, a3 = signal.sos2tf(sos3)
b4, a4 = signal.sos2tf(sos4)
b5, a5 = signal.sos2tf(sos5)

file = open("FilterCoeffs.h", ’w’)
file.write("float ")
file.write("FilterCoeffs")
file.write("[45] = {")
file.write("\n")
for x in range(5):

file.write(str(b1[x]))
file.write(", ")

for x in range(4):
file.write(str(a1[x+1]))
file.write(", ")

file.write("\n")
for x in range(5):

file.write(str(b2[x]))
file.write(", ")

for x in range(4):
file.write(str(a2[x+1]))
file.write(", ")

file.write("\n")
for x in range(5):

file.write(str(b3[x]))
file.write(", ")

for x in range(4):
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file.write(str(a3[x+1]))
file.write(", ")

file.write("\n")
for x in range(5):

file.write(str(b4[x]))
file.write(", ")

for x in range(4):
file.write(str(a4[x+1]))
file.write(", ")

file.write("\n")
for x in range(5):

file.write(str(b5[x]))
file.write(", ")

for x in range(4):
file.write(str(a5[x+1]))
file.write(", ")

file.write("\n")
file.write("};")
file.close()

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.semilogx(w1, 20 * np.log10(np.maximum(abs(h1), 1e-5)))
ax.axis((10, 48000, -100, 10))
ax.semilogx(w2, 20 * np.log10(np.maximum(abs(h2), 1e-5)))
ax.semilogx(w3, 20 * np.log10(np.maximum(abs(h3), 1e-5)))
ax.semilogx(w4, 20 * np.log10(np.maximum(abs(h4), 1e-5)))
ax.semilogx(w5, 20 * np.log10(np.maximum(abs(h5), 1e-5)))
plt.show()

12.5.3 Feeding the Equalized Digital Signal to Output

The last step in processing the analog audio signal on the STM32F4 microcontroller
is feeding the processed digital signal to output in analog form. Afterward, we
should feed the analog signal to a speaker to hear it. To do so, we can benefit from
the DAC module.

Block diagram of a typical speaker is as in Fig. 12.5. Here, the analog signal is
applied to windings of the voice coil, and electrical current flows through them. The
voice coil is placed inside a magnetic field of permanent magnet. Hence, the voice
coil moves back and forth inside this magnetic field according to the amplitude
and direction of the applied current. The voice coil is also attached to the cone.
Hence, the cone moves with voice coil. As a result, the cone vibrates surrounding
air molecules to create an audio signal.

We should amplify the analog signal before feeding it to the speaker. We will
use the Adafruit PAM8302A audio amplifier breakout board for this purpose.
PAM8302A is a 2.5 W class D audio amplifier. It is a mono-amplifier which means
it can drive only one speaker at a time. It amplifies the analog input signal between
0 and 24 dB which can be adjusted by its onboard potentiometer.
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Fig. 12.5 Block diagram of a typical speaker

Fig. 12.6 Circuit layout of
the equalizer system

12.5.4 Final Form of the Overall System

We provide circuit layout of the overall five-band equalizer system formed by all
mentioned modules in Fig. 12.6. As can be seen in this figure, we connect Vin,
GND, and DC pins of the SPW2430 MEMS microphone board to 3 V, GND, and
PA1 pins of the STM32F4 board, respectively. 3V and AC pins of SPW2430 MEMS
microphone board are left unconnected.

We should connect GND, negative audio input, and positive audio input pins
of the PAM8302A board to GND, GND, and PA4 pins of STM32F4 board,
respectively. The PAM8302 board can be supplied from 2 to 5 V. Hence, we connect
VCC pin of the PAM8302A board to 3 V pin of the STM32F4 board. Shutdown pin
of the PAM8302A board is left unconnected. Finally, outputs of the PAM8302A
board are connected to the speaker. Here, we use the Adafruit 3 W, 4 � mono-
enclosed speaker in implementation.

We provide the C code for our five-band equalizer in Listing 12.8. In order to exe-
cute it on the STM32F4 microcontroller, open a new project under STM32CubeIDE.
In STM32CubeMX, set HCLK frequency to 180000000, and set TIM2 to trigger
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ADC module with 48,000 Hz sampling frequency. Pin PA1 should be set as ADC
output. Likewise, pin PA4 should be set as DAC output. We will use the filters
obtained in the previous section as equalizer band-pass filters. The obtained header
file (from either method) should be placed inside the “Core->Inc” folder of the
project folder.

Listing 12.8 The C code for the equalizer system

/* USER CODE BEGIN Includes */
#include "math.h"
#include "100HzFilter.h"
#include "300HzFilter.h"
#include "1000HzFilter.h"
#include "3000HzFilter.h"
#include "10000HzFilter.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PD */
#define GAIN100Hz gain12
#define GAIN300Hz gain12
#define GAIN1000Hz gain12
#define GAIN3000Hz gain12
#define GAIN10000Hz gain12

#define NUM_SIZE 3
#define DENUM_SIZE 3
#define INPUT_BUFFER_SIZE 3
#define OUTPUT_BUFFER_SIZE 3
/* USER CODE END PD */

/* USER CODE BEGIN PV */
uint16_t data;
int cnt = 0;
uint16_t DACOut;
float xArr100Hz[INPUT_BUFFER_SIZE] = {0};
float yArr100Hz[OUTPUT_BUFFER_SIZE] = {0};
float xArr300Hz[INPUT_BUFFER_SIZE] = {0};
float yArr300Hz[OUTPUT_BUFFER_SIZE] = {0};
float xArr1000Hz[INPUT_BUFFER_SIZE] = {0};
float yArr1000Hz[OUTPUT_BUFFER_SIZE] = {0};
float xArr3000Hz[INPUT_BUFFER_SIZE] = {0};
float yArr3000Hz[OUTPUT_BUFFER_SIZE] = {0};
float xArr10000Hz[INPUT_BUFFER_SIZE] = {0};
float yArr10000Hz[OUTPUT_BUFFER_SIZE] = {0};
enum gaindB{
gain12, gain11, gain10, gain9, gain8, gain7, gain6, gain5, gain4,

gain3, gain2, gain1, gain0, gainn1, gainn2, gainn3, gainn4,
gainn5, gainn6, gainn7, gainn8, gainn9, gainn10, gainn11,
gainn12

};

/* USER CODE BEGIN 0 */
float IIR_Filter(float *num, float *denum, float *x, float *y,

int index){
float out = 0;
int i;
for(i = 0; i < NUM_SIZE; i++){
if(index >= i){
out += *(num+i) * *(x+i);
}
}
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for(i = 1; i < DENUM_SIZE; i++){
if(index >= i){
out -= *(denum+i-1) * *(y+i);
}
}
return out;
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
data = HAL_ADC_GetValue(hadc);
xArr100Hz[0] = (data - 870) * 3 / 4095;
xArr300Hz[0] = xArr100Hz[0];
xArr1000Hz[0] = xArr100Hz[0];
xArr3000Hz[0] = xArr100Hz[0];
xArr10000Hz[0] = xArr100Hz[0];
yArr100Hz[0] = IIR_Filter(&Filter100[GAIN100Hz * 5], &Filter100[

GAIN100Hz * 5 + 3], xArr100Hz , yArr100Hz , cnt);
yArr300Hz[0] = IIR_Filter(&Filter300[GAIN300Hz * 5], &Filter300[

GAIN300Hz * 5 + 3], xArr300Hz , yArr300Hz , cnt);
yArr1000Hz[0] = IIR_Filter(&Filter1000[GAIN1000Hz * 5], &

Filter1000[GAIN1000Hz * 5 + 3], xArr1000Hz , yArr1000Hz , cnt);
yArr3000Hz[0] = IIR_Filter(&Filter3000[GAIN3000Hz * 5], &

Filter3000[GAIN3000Hz * 5 + 3], xArr3000Hz , yArr3000Hz , cnt);
yArr10000Hz[0] = IIR_Filter(&Filter10000[GAIN10000Hz * 5], &

Filter10000[GAIN10000Hz * 5 + 3], xArr10000Hz , yArr10000Hz ,
cnt);

DACOut = (uint16_t)(((yArr100Hz[0] + yArr300Hz[0] + yArr1000Hz[0]
+ yArr3000Hz[0] + yArr10000Hz[0]) * 4095 / 3)+2048);

HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1 , DAC_ALIGN_12B_R , DACOut);
cnt++;
xArr100Hz[2] = xArr100Hz[1];
xArr100Hz[1] = xArr100Hz[0];
yArr100Hz[2] = yArr100Hz[1];
yArr100Hz[1] = yArr100Hz[0];
xArr300Hz[2] = xArr300Hz[1];
xArr300Hz[1] = xArr300Hz[0];
yArr300Hz[2] = yArr300Hz[1];
yArr300Hz[1] = yArr300Hz[0];
xArr1000Hz[2] = xArr1000Hz[1];
xArr1000Hz[1] = xArr1000Hz[0];
yArr1000Hz[2] = yArr1000Hz[1];
yArr1000Hz[1] = yArr1000Hz[0];
xArr3000Hz[2] = xArr3000Hz[1];
xArr3000Hz[1] = xArr3000Hz[0];
yArr3000Hz[2] = yArr3000Hz[1];
yArr3000Hz[1] = yArr3000Hz[0];
xArr10000Hz[2] = xArr10000Hz[1];
xArr10000Hz[1] = xArr10000Hz[0];
yArr10000Hz[2] = yArr10000Hz[1];
yArr10000Hz[1] = yArr10000Hz[0];
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start(&htim2);
HAL_ADC_Start_IT(&hadc1);
HAL_DAC_Start(&hdac, DAC_CHANNEL_1);
/* USER CODE END 2 */

In Listing 12.8, the buffers xarr and yarr are used to keep past input and output
values for filtering purposes, respectively. As we obtain an ADC sample as input,
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it passes through five equalizer bands. Band outputs are summed and obtained data
is fed to the DAC module. The user can select desired gain values for each band at
the beginning of the code. Here, positive gains are set by using gainx, and negative
gains are set by using gainnx enumerator values. Then, the obtained data is fed to
output. The xarr and yarr buffers are shifted by one element for the next audio
sample to be processed.

We provided the C++ and MicroPython codes for our five-band equalizer as
supplementary material in the accompanying book web site. The exact name for
these files are “Listing12_9.cpp” and “Listing12_10.py.” The reader can benefit
from them to execute the equalizer in C++ and MicroPython languages, respectively.

12.6 Summary of the Chapter

As microcontrollers have become more powerful, performing digital signal process-
ing operations became feasible on them. This leads to decision-making based on
digital signals on the edge. Therefore, we focused on fundamental digital signal
processing operations in this chapter. Our approach was more of an introduction to
the important concepts than detailed explanation of all topics. Hence, we started
with the definition and representation of digital signals on embedded systems.
Then, we considered digital systems used for processing digital signals. Here,
the main focus was on filtering. Hence, we provided an end-to-end equalizer
design and implementation system for analog signals. We also briefly introduced
complex domain analysis of digital signals and systems. Throughout the chapter,
we performed offline operations on PC via Python language. We provided the
C, C++, and MicroPython codes to run on the STM32F4 microcontroller for
online operations. We also provided sample codes to transfer data between the
PC and STM32F4 microcontroller. Hence, the reader can analyze and observe the
acquired signal from the STM32F4 microcontroller. The concepts introduced in this
chapter can be used in deep learning-based neural network systems in advanced
applications. Hence, we strongly suggest the reader to become familiar to the digital
signal processing concepts.

Problems

12.1. What is the difference between FIR and IIR filters? How can they be
implemented on an embedded system?

12.2. What is the relationship between the z-transform and DTFT?

12.3. z-Transform and inverse z-transform can be calculated in symbolic form in
Python on PC. Let’s pick the digital signal as
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x[n] =
{

1 n = 0, 1, 2

0 otherwise
(12.8)

Take the z-transform of this signal in Python. Then, take the inverse z-transform
of the result. Do you obtain the original signal x[n]?

12.4. Find the z-transform and FFT of the equalizer implementation in Sect. 12.5.2
in Python on PC. Plot the magnitude of the FFT result on PC.

12.5. Generate a random signal with 32 elements in the STM32F4 microcontroller.
Transfer the generated signal to PC, and plot it in Python. Form the project using

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

12.6. Acquire the gyroscope signal from the STM32F4 board with 32 samples.
Transfer the generated signal to PC, and plot it in Python. Form the project using

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

12.7. Median filter is a popular nonlinear filter used in practice. Output of the filter
is obtained by the median of the subset of the input signal (called window). Then,
this window is moved, and the next output is obtained. This is called the sliding
window approach. Implement the median filter on the STM32F4 microcontroller
with window size 5. Apply it on the gyroscope signal with 512 elements. Transfer
the generated signal to PC, and plot it in Python. Form the project using

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

12.8. Generate a random signal (with 64 elements) from the uniform distribution
between 0 and 1 in Python on PC. Transfer the generated signal to the STM32F4
microcontroller. Threshold the transferred signal on the microcontroller such that a
value greater than 0.5 is set as 1. A value less than or equal to 0.5 is set as 0. Transfer
the thresholded signal to PC and plot it in Python. Form the project using

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython
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13Introduction to Digital Control

13.1 About Digital Control

Operations to be performed under digital control are closely related to the digital
signal processing concepts introduced in Chap. 12. Although both have similar
grounds, they have different aims. Therefore, we will first consider the question
what should we understand from the control action? As we provide an answer to
this question, we will next focus on how to implement a digital controller on an
embedded system (more specifically the STM32F4 microcontroller). Hence, we will
make sure that the topics to be considered in the following sections make sense.

13.1.1 The Control Action

We introduced digital systems in Chap. 12. Some of these systems may be used in
applications in which their outputs should satisfy predefined criteria. Let’s consider
an example on this issue. Assume that we pick a DC motor as the system. Our
system will have its input signal as voltage. One output that can be obtained from
the system is the speed of the motor. Hence, we have a system with associated input
and output signals.

Different from digital signal processing, we are interested in the characteristics
of the output signal (speed of the motor) obtained from the system (DC motor in
our example) for a given input reference signal. In other words, we feed a reference
signal to rotate the DC motor at desired speed. During this operation, we may ask
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the system to reach the desired speed within a certain time duration. If the system
can satisfy this requirement, then all is fine. If the DC motor cannot satisfy the
requirement, then we should add a controller to make sure that the overall system,
formed by the controller and DC motor, satisfies the requirement. As a result,
the control action, imposed by the controller, aims to modify the overall system
characteristics to satisfy the desired requirements. At this step, we should emphasize
that the controller is also a system, designed for the given specifications at hand.

There are basically two controller types as transfer function and state-space
based. The transfer function-based control takes the input-output relation of the
system to be controlled as in Chap. 12. In other words, the controller is represented
by its transfer function. Hence, it can be designed according to the transfer function
tools. We can also have state-space-based control. Here, we first define states of the
system which are the minimum set of parameters that can represent the entire system
behavior at any given time. The number of states is equal to the number of first-
order difference equations to describe the overall system dynamics. These first-order
difference equations are arranged in vector form in state-space-based control. In this
book, we will only consider transfer function-based control. For more information
on state-space-based control, please see [1].

We can also have open- and closed-loop control action. In the open-loop control,
we modify the input signal before feeding it to the system to be controlled. Then,
the modified signal is fed to the system to obtain the desired output. In the closed-
loop control, we first form an open-loop controller. Then, we observe the output of
the system to be controlled by another system and feed the observed signal back to
input. Hence, we have a feedback loop. The aim here is to make sure that the output
obtained from the overall system follows the desired input reference signal. We will
consider the closed-loop control action throughout the chapter. Hence, we provide
the general block diagram of a system with closed-loop control action in Fig. 13.1.
We will provide detailed explanation on the blocks in this figure in the following
sections.

Fig. 13.1 General block diagram of a system with closed-loop control action
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13.1.2 Representing the Digital Controller in an Embedded System

We mentioned that the digital controller is also a system. Hence, it can be repre-
sented in code form on an embedded system (such as the STM32F4 microcontroller)
by the methods introduced in Chap. 12. The STM32F4 microcontroller offers extra
advantages besides representing the controller in code form. As an example, sensors
to be used to measure output of the system can be used in connection with the
microcontroller. Different input signals can be formed by the microcontroller. As
a result, we can form a complete system to construct the digital controller and
feedback action on the STM32F4 microcontroller (or STM32F4 board to be more
precise). Next, we will follow this approach to form such controllers.

13.2 Transfer Function Based Control

As explained in the previous section, transfer function based control can be
explained by the concepts introduced in Chap. 12. Therefore, we pick it as the
control type in this chapter. Moreover, we will use closed-loop control. Hence, we
should also explain what the open-loop control does. As a result, we will provide
general definitions on both open- and closed-loop controls in this section. We
will also explain the framework in implementing each method on the STM32F4
microcontroller. Finally, we will briefly talk about the transfer function based
controller design strategies.

13.2.1 Open-Loop Control

In the open-loop control, the reference input signal is directly applied to the
controller. The controller modifies this signal and then feeds it to the system to be
controlled. Block diagram of an open-loop control system is given in Fig. 13.2. Here,
G(z) is the digital system transfer function. C(z) is the controller system transfer
function. x[n] is the reference input signal, and y[n] is the system output. In the
open-loop control system, the output can be obtained as Y (z) = G(z)C(z)X(z).

Assume that G(z) and C(z) are represented by IIR transfer functions:

G(z) = Y (z)

U(z)
= bg0 ∗ z2 + bg1 ∗ z + bg2

ag0 ∗ z2 + ag1 ∗ z + ag2
(13.1)

C(z) =U(z)

X(z)
= bc0 ∗ z + bc1

ac0 ∗ z + ac1
(13.2)

Fig. 13.2 General structure
of the open-loop control
system
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These systems can be represented by their difference equations

ag0 ∗ y[n] + ag1 ∗ y[n − 1] + ag2 ∗ y[n − 2] = bg0 ∗ u[n] + bg1 ∗ u[n − 1]
+ bg2 ∗ u[n − 2] (13.3)

ac0 ∗ u[n] + ac1 ∗ u[n − 1] = bc0 ∗ x[n] + bc1 ∗ x[n − 1]
(13.4)

We can represent the pseudocode of the overall system as follows:

bc is the feedforward coefficient array of the controller with
length K1

ac is the feedback coefficient array of the controller with
length L1

bg is the feedforward coefficient array of the system with length
K2

ag is the feedback coefficient array of the system with length L2
ba is the feedforward coefficient array of overall system with

length K = K1 + K2 - 1
aa is the feedback coefficient array of overall system with

length L = L1 + L2 - 1
y is the output array with size length N
x is the input array

for(k1 = 0 to K1){
for(k2 = 0 to K2){
ba[k1+k2] += bc[k1] * bg[k2]
}

for(l1 = 0 to L1){
for(l2 = 0 to L2){
aa[l1+l2] += ac[l1] * ag[l2]
}

for(k3 = 0 to K3)
ba[k3] = ba[k3] / aa[0]

for(l3 = 1 to L3)
aa[l3] = aa[l3] / aa[0]

aa[0] = 1

for(n = 0 to N){
sum = 0
for(k = 0 to K){
if(k <(n+1)){
sum += ba[k] * x[n-k]
}}

for(l = 1 to L){
if(l <(n+1))
sum -= aa[l] * y[n-l]
}

y[n] = sum
}
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Fig. 13.3 General structure of the closed-loop control system

13.2.2 Closed-Loop Control

In the closed-loop control, the system output is observed, and it affects the controller
input through a feedback loop. As a result, the system response depends on its
output. Block diagram of a closed-loop control system is given in Fig. 13.3.

As can be seen in Fig. 13.3, the system output, y[n], is measured by a sensor and
fed back to input. The transfer function of the feedback is represented by H(z). The
difference between the system output and reference input is obtained as error signal,
e[n], which is applied to the controller. Based on these definitions, we will have the
overall transfer function of the closed-loop system as

Y (z)

X(z)
= C(z)G(z)

1 + H(z)C(z)G(z)
(13.5)

Assume that G(z), C(z), and H(z) are represented by IIR transfer functions:

G(z) = Y (z)

U(z)
= bg0 ∗ z2 + bg1 ∗ z + bg2

ag0 ∗ z2 + ag1 ∗ z + ag2
(13.6)

C(z) = U(z)

E(z)
= bc0 ∗ z + bc1

ac0 ∗ z + ac1
(13.7)

H(z) = F(z)

Y (z)
= bh0 ∗ z + bh1

ah0
(13.8)

These systems can be represented by their difference equations as

ag0 ∗ y[n] + ag1 ∗ y[n − 1] + ag2 ∗ y[n − 2] = bg0 ∗ u[n] + bg1 ∗ u[n − 1]
+ bg2 ∗ u[n − 2] (13.9)

ac0 ∗ u[n] + ac1 ∗ u[n − 1] = bc0 ∗ e[n] + bc1 ∗ e[n − 1]
(13.10)
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ah0 ∗ f [n] = bh0 ∗ y[n] + bh1 ∗ y[n − 1] (13.11)

We can represent the pseudocode of the overall system as follows:

bc is the feedforward coefficient array of the controller with
length K1

ac is the feedback coefficient array of the controller with
length L1

bg is the feedforward coefficient array of the system with length
K2

ag is the feedback coefficient array of the system with length L2
bcg is the feedforward coefficient array of controller*system

with length K3 = K1 + K2 - 1
acg is the feedback coefficient array of overall controller*

system with length L3 = L1 + L2 - 1

for(k1 = 0 to K1){
for(k2 = 0 to K2){
ba[k1+k2] += bc[k1] * bg[k2]
}

for(l1 = 0 to L1){
for(l2 = 0 to L2){
aa[l1+l2] += ac[l1] * ag[l2]
}

for(k3 = 0 to K3)
bcg[k3] = bcg[k3] / acg[0]

for(l3 = 1 to L3)
acg[l3] = acg[l3] / acg[0]

acg[0] = 1

bh is the feedforward coefficient array of the feedback system
with length K4

ah is the feedback coefficient array of the feedback system with
length L4

ba is the feedforward coefficient array of overall system with
length K = K3 + L4 - 1

aa is the feedback coefficient array of overall overall system
with length L = max(K3 + K4 - 1, L3 + L4 - 1)

ad1 is the dummy array with length D1 = K3 + K4 - 1
ad2 is the dummy array with length D2 = L3 + L4 - 1
y is the output array with size length N
x is the input array

for(k3 = 0 to K3){
for(l4 = 0 to L4){
ba[k3+l4] += bcg[k3] * ah[l4]
}

for(k3 = 0 to K3){
for(k4 = 0 to K4){
ad1[k3+k4] += bcg[k3] * bh[k4]
}

for(l3 = 0 to L3){
for(l4 = 0 to L4){
ad2[l3+l4] += acg[l3] * ah[l4]
}
if(K3+K4 > L3+L4){
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for(d1 = 0 to D1){
if(d1 < (K3 + K4 - L3 - L4))
aa[d1] = ad1[d1]
else{
aa[d1] = ad1[d1] + ad2[d1 - (K3 + K4 - L3 - L4)]
}}}
else{
for(d2 = 0 to D2){
if(d2 < (L3 + L4 - K3 - K4))
aa[d2] = ad2[d2]
else{
aa[d2] = ad2[d2] + ad1[d2 - (L3 + L4 - K3 - K4)]
}}}}

for(k = 0 to K)
ba[k] = ba[k] / aa[0]

for(l = 1 to L)
aa[l] = aa[l] / aa[0]

aa[0] = 1

for(n = 0 to N){
sum = 0
for(k = 0 to K){
if(k <(n+1)){
sum += ba[k] * x[n-k]
}}

for(l = 1 to L){
if(l <(n+1))
sum -= aa[l] * y[n-l]
}

y[n] = sum
}

13.2.3 Designing a Controller

We can design a controller (either in open- or closed-loop form) to satisfy the given
performance criteria. There are several well-known design methods developed for
this purpose in literature. The reader can pick one of these to form his or her digital
controller accordingly. Then, the controller can be implemented on the STM32F4
microcontroller to form the overall digital control system.

The reader can also benefit from available programs such as MATLAB to design
the controller. Here, the program can generate a controller to perform the desired
control action based on given performance criteria. As a side note, controller design
programs (such as MATLAB) are also based on theoretical methods introduced
in literature. However, they simplify life for the user by making calculations
automatically. We refer the reader to our book for more information on this topic
[1]. There is a specific method, called PID controller design, which is extensively
used in practical applications. We will consider it next.
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13.3 PID Controllers

Proportional integral derivative (PID) is one of the most popular controller structures
used in practical applications. The main reason for this popularity is that PID has
well-defined design steps. Hence, the user can follow them to construct a fairly good
working controller. We will consider the PID controller structure from a general
perspective first. Then, we will focus on the design steps. Finally, we will provide
ways of implementing the PID controller in C, C++, and MicroPython languages on
the STM32F4 microcontroller.

13.3.1 General Structure

The PID controller is initially developed for analog systems. Hence, it has a
transfer function representation in s-domain (complex domain representation for
continuous-time signals and systems). We can convert this representation to digital
form by bilinear transformation [1]. Based on this, we will have the overall transfer
function of the PID controller as

C(z) =Cp(z) + Ci(z) + Cd(z) (13.12)

Cp(z) =Kp (13.13)

Ci(z) = (Ki ∗ Ts/2) ∗ (z + 1)

z − 1
(13.14)

Cd(z) = (Kd ∗ 2/Ts) ∗ (z − 1)

z + 1
(13.15)

where Ts is the sampling period used in transforming the analog signal to digital
form. Kp, Ki , and Kd stand for gain parameters for proportional, integral, and
derivative terms, respectively. These should be set to satisfy the design criteria at
hand. To note here, one or two of these gains can be set to zero to obtain the PI
and P controllers, respectively. We will consider a PID controller design method in
Sect. 13.3.2. Beforehand, let’s focus on the P, PI, and PID controllers in detail.

13.3.1.1 P Controller
The aim of the proportional (P) controller is to multiply the error signal by a constant
in the closed-loop setup and generate the control signal accordingly. Based on this,
the closed-loop control setup with the P controller will be as in Fig. 13.4.

13.3.1.2 PI Controller
PI controller has proportional gain the same as in the P controller. It also has
an additional integrator which integrates the error until it reaches zero. Hence, it
eliminates the steady-state error occurring in the system. The closed-loop control
setup with the PI controller will be as in Fig. 13.5.
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Fig. 13.4 Closed-loop control with the P controller

Fig. 13.5 Closed-loop control with the PI controller

13.3.1.3 PID Controller
The PI controller can be extended further by adding a derivative term. This leads to
the PID controller which merges both previous input values and future predictions in
the control action. The derivative term aims to improve the controller by predicting
future input values. However, it may also have a negative effect if the signal to be
processed is noisy. For such cases, the derivative term may enhance noise in the
signal. As a result, the PID controller may not work as expected or may not work at
all in practice. Therefore, this structure should be used with precaution. The closed-
loop control setup with the PID controller will be as in Fig. 13.6.

13.3.2 PID Controller Design

As explained in Sect. 13.3.1, the PID controller has three gain parameters Kp, Ki ,
and Kd . There are several methods in literature to obtain these parameters. In this
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Fig. 13.6 Closed-loop control with the PID controller

Table 13.1 PID gain
parameters according to the
Ziegler-Nichols method

Controller Kp Ki Kd

P 1.0/a – –

PI 0.9/a Kp/(3L) –

PID 1.2/a Kp/(2L) KpL/2

book, we will benefit from the Ziegler-Nichols method for this purpose [1]. This
method uses the first-order (dead-time) model of the system to be controlled to
calculate PID parameters. The dead-time model has three parameters as the system
gain (K), the system dead time (L), and time constant (τ ). In order to calculate
them, step response of the system is generated first. The K parameter is calculated
as the ratio of the difference of the final and initial values of the system output to the
difference of the final and initial values of the system input. We can estimate τ by
multiplying the time it takes the system to reach 28.3% of its step response by 1.5.
We can find L by subtracting τ from the time it takes the system to reach 63.2% of
its step response. Finally, the a parameter is obtained as a = K L

τ
. The Kp, Ki , and

Kd can be calculated using K , L, and a parameters as tabulated in Table 13.1. The
reader can pick the parameter set from this table for the selected controller type as
P, PI, or PID.

13.3.3 Implementing the PID Controller on the STM32F4
Microcontroller

We can implement the PID controller on the STM32F4 microcontroller. To do so,
we form a controller via Kp, Ki , and Kd coefficients. Then, we obtain the difference
equation of this transfer function to obtain the output for a given input. We provide
the C, C++, and MicroPython codes for this purpose next.
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13.3.3.1 Implementation in C Language
We formed the PID library to initialize and use PID controller in C language. To
use this library, we should add the “PID.c” and “PID.h” files to “project->Core-
>Src” and “project->Core->Inc” folders for the active STM32CubeIDE project,
respectively.

Our PID library has two functions as PID_Init and PID_Output. Both use the
struct PID_struct which holds PID controller parameters. We provide the detailed
information on them next.

typedef struct _pid {
float Kp, Ki, Kd;
float Ts;
float b0, b1, b2;
float a0, a1, a2;
float yold1, yold2;
float xold1, xold2;

} PID_struct;

void PID_Init(PID_struct *pid, float Kp, float Ki, float Kd,
float Ts)

/*
pid: pointer to the PID_struct struct
Kp: proportional gain
Ki: integral gain
Kd: derivative gain
Ts: sampling time of PID controller in seconds
*/

float PID_Output(float ref, float out)
/*
ref: reference input of the overall system
out: output of the overall system
*/

The struct PID_struct holds the general PID parameters Kp, Ki, Kd, and Ts.
It also contains PID controller parameters b0, b1, b2, a0, a1, and a2. Finally,
the structure keeps the previous controller input and output samples as yold1,
yold2, xold1, and xold2. The function PID_Init initializes the PID controller
parameters for the given Kp, Ki, Kd, and Ts values. The function PID_Output
generates controller output sample for the given reference and overall system output
samples.

We provide a sample code in Listing 13.1 on the usage of the given PID functions
in C language. First, PID controller is initialized with parameters Kp = 10, Ki = 0,
Kd = 0, and Ts = 0.01. Then, the system with parameters bSystem and aSystem
is simulated for step input with 250 samples. Obtained output samples are stored to
the out array.

Listing 13.1 PID controller applied to a sample system, the C code

/* USER CODE BEGIN Includes */
#include "PID.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
PID_struct myPID;
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float bSystem[3] = {0.002, 0.004, 0.002};
float aSystem[3] = {1, -1.82, 0.818};
float xSystem[3] = {0};
float ySystem[3] = {0};
float in[250];
float out[250];
int i;
int k;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
PID_Init(&myPID, 10, 0, 0, 0.01);
for (i = 0; i < 250; i++)
{
in[i] = 1;
xSystem[0] = PID_Output(&myPID, in[i], ySystem[1]);
ySystem[0] = bSystem[0] * xSystem[0] + bSystem[1] * xSystem[1] +

bSystem[2] * xSystem[2] - aSystem[1] * ySystem[1] - aSystem
[2] * ySystem[2];

out[i] = ySystem[0];
for (k = 2; k > 0; k--)
{
ySystem[k] = ySystem[k - 1];
xSystem[k] = xSystem[k - 1];
}
}
/* USER CODE END 2 */

13.3.3.2 Implementation in C++ Language
We also formed the PID library to initialize and use PID controller in C++ language.
To use this library, we should add the “PID.cpp” and “PID.hpp” files to the active
Mbed Studio project. As a side note, all these library files are provided in the
accompanying book web site.

We formed a class PID within the PID library. This class has two functions as
Init and Output. These functions work in the same way as their C counterparts
introduced in the previous section. We provide detailed information on the class and
its functions next.

PID()

void Init(float Kp, float Ki, float Kd, float Ts)
/*
Kp: proportional gain
Ki: integral gain
Kd: derivative gain
Ts: sampling time of PID controller in seconds
*/

float Output(float ref, float out)
/*
ref: reference input of the overall system
out: output of the overall system
*/

The function Init initializes the PID controller parameters for the given Kp, Ki,
Kd, and Ts values. The function Output generates controller output sample for the
given reference and overall system output samples.
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We provide a sample code in Listing 13.2 on the usage of the given PID functions
in C++ language. This code works in the same way as its C counterpart given in
Listing 13.1.

Listing 13.2 PID controller applied to the sample system, the C++ code

#include "mbed.h"
#include "PID.hpp"

float bSystem[3] = {0.002, 0.004, 0.002};
float aSystem[3] = {1, -1.82, 0.818};
float xSystem[3] = {0};
float ySystem[3] = {0};
float in[250];
float out[250];
int i;
int k;

int main()
{
PID myPID(10, 0, 0, 0.01);
for (i = 0; i < 250; i++)
{
in[i] = 1;
xSystem[0] = myPID.Output(in[i], ySystem[1]);
ySystem[0] = bSystem[0] * xSystem[0] + bSystem[1] * xSystem[1] +

bSystem[2] * xSystem[2] - aSystem[1] * ySystem[1] - aSystem
[2] * ySystem[2];

out[i] = ySystem[0];
for (k = 2; k > 0; k--)
{
ySystem[k] = ySystem[k - 1];
xSystem[k] = xSystem[k - 1];
}
}

while (true);
}
}

13.3.3.3 Implementation in MicroPython
We also formed the PID library to initialize and use the PID controller in
MicroPython. To use this library, we should add the “PIDlib.py” file to the
active MicroPython project. As a side note, this library file is provided in the
accompanying book web site.

We formed a class PID within the PID library. This class has two functions
as __init__ and Output. These functions work in the same way as their C
counterparts introduced in the previous section. We provide detailed information
on the class and its functions next.

PID()

__init__(self, Kp, Ki, Kd, Ts)
/*
Kp: proportional gain
Ki: integral gain
Kd: derivative gain
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Ts: sampling time of PID controller in seconds
*/

Output(self, ref, out)
/*
ref: reference input of the overall system
out: output of the overall system
*/

The function __init__ is the constructor of the class. It is called when the PID
object is created for the given Kp, Ki, Kd, and Ts values. The function Output
generates controller output sample for the given reference and overall system output
samples.

We provide a sample code in Listing 13.3 on the usage of the given PID functions
in MicroPython. This code works in the same way as its C counterpart given in
Listing 13.1.

Listing 13.3 PID controller applied to a sample system, the MicroPython code

import PIDlib

def main():
bSystem = [0.002, 0.004, 0.002]
aSystem = [1, -1.82, 0.818]
xSystem = [0] * 3
ySystem = [0] * 3
inOverall = [0] * 250
outOverall = [0] * 250
myPID = PIDlib.PID(10, 0, 0, 0.01)
for i in range(250):

inOverall[i] = 1
xSystem[0] = myPID.Output(inOverall[i], ySystem[1])
ySystem[0] = bSystem[0] * xSystem[0] + bSystem[1] *

xSystem[1] + \
bSystem[2] * xSystem[2] - aSystem[1] * \
ySystem[1] - aSystem[2] * ySystem[2]

outOverall[i] = ySystem[0]
for k in range(2, 0, -1):

ySystem[k] = ySystem[k-1]
xSystem[k] = xSystem[k-1]

main()

13.4 PID Control of a DCMotor by the STM32F4Microcontroller

This section is on speed control of a DC motor. Therefore, we will start with
summarizing the DC motor to be used in operation. Then, we will introduce the
encoder as the sensor to be used in the feedback loop. Finally, we will provide
the PID controller implementation in C, C++, and MicroPython languages for the
overall control action.
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Fig. 13.7 Brushed DC motor

13.4.1 DCMotor as the System to Be Controlled

A brushed DC motor consists of stator magnets, rotor coils, commutators, and
brushes as shown in Fig. 13.7. Here, the current flowing through the coil creates
an electromagnet. Poles of the electromagnet are attracted to the opposite poles of
stator magnets, and it starts rotating. Under normal conditions, rotor coil rotates
180◦ and stops when opposite poles match. However, there is a gap between
commutator parts. Hence, the direction of the current is reversed, and opposite poles
are created before rotor coil stops. Hence, a continuous motion is achieved.

We pick the DC motor as in Fig. 13.8. This motor is called Pololu 378:1 Metal
Gearmotor 25D×73L mm LP 12 V with 48 CPR encoder. It is a 12 V low-
power brushed DC motor with 378:1 gearbox to decrease the rotation speed while
increasing torque. The motor has 48 counts per revolution (CPR) quadrature encoder
to be explained in detail in the following section.
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Fig. 13.8 Pololu brushed
DC motor

Fig. 13.9 Quadrature encoder outputs

13.4.2 Encoder as the Sensor

As mentioned in the previous section, the selected DC motor has a quadrature
encoder with 48 CPR to measure the speed of the DC motor. A quadrature encoder
is an incremental encoder with the magnetic two-channel Hall effect sensor. There
is a magnetic code disk placed on the motor shaft, and two square waves are created
as motor rotates. These waves are called Channel A and B outputs, and they are
approximately 90◦ out of phase as shown in Fig. 13.9.

Direction of the motor can be obtained from the order of the signals in Fig. 13.9.
Channel A output leads Channel B output when the motor rotates in clockwise
direction. Channel B output leads Channel A output when the motor rotates in
counterclockwise direction.
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Fig. 13.10 Circuit layout of
the DC motor controller
system

Speed of the motor can be calculated using frequency of the signals in Fig. 13.9
and sensor CPR. If both rising and falling edges of output signals are counted, the
sensor provides the resolution of 48 CPR. To find the resolution at the output of the
gearbox shaft, the sensor CPR must be multiplied by the gear ratio. Sensor CPR
can also be used to measure motor position. We already know that there will be 48
pulses per full rotation. Hence, angular position of the motor with respect to the
initial position can be calculated by counting quadrature encoder pulses.

13.4.3 Speed Control of the DCMotor

We provide circuit layout of the overall DC motor control system in Fig. 13.10. As
can be seen in this figure, we connect VM and GND pins of the Adafruit TB6612
DC motor driver board to 12 V DC power supply. Here, a 12 V 1 A DC adapter can
be used as power supply. Motor output pins MotorA1 and MotorA2 of the TB6612
board should be connected to the red and black cables of the DC motor, respectively.
Blue and green cables of the DC motor are VCC and GND pins of the encoder.
Hence, they should be connected to the 5V and GND pins of the STM32F4 board,
respectively. VCC and GND pins of the TB6612 board should be connected to the
3V and GND pins of the STM32F4 board, respectively. AIN1 and AIN2 pins of
TB6612 board should be connected to the pins PE3 and PE4 of the STM32F4 board,
respectively. They are used to control the direction of the DC motor. PWMA pin of
the TB6612 board should be connected to the pin PC8 of the STM32F4 board.
Finally, STBY pin of the TB6612 board should be connected to pin PE2 of the
STM32F4 board. This pin should be set to logic level 1 to drive the DC motor.
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We provide the C code for open-loop speed control of the DC motor in
Listing 13.4. Here, the function Set_Speed_Open_Loop is used to set the speed
of the DC motor between −14 and 14 rpm. Frequency of the PWM signal fed to the
DC motor is set to 20 kHz. Speed of the DC motor is calculated using input capture
property of the TIM2 module. The obtained values are sent to PC every 0.01 s using
the TIM10 interrupt. Here, the baud rate for the UART module should be set to
2,000,000 bits/s.

Listing 13.4 The C code for the open-loop speed control of the DC motor

/* USER CODE BEGIN PV */
uint32_t ICValue1 = 0;
uint32_t ICValue2 = 0;
uint32_t ICDiff = 0;
uint8_t CaptureIndex = 0;
float speed = 0;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
HAL_UART_Transmit(&huart1, (uint8_t*)&speed, 4, 1000);
}

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){
if(CaptureIndex == 0)
{
ICValue1 = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1);
CaptureIndex = 1;
}
else
{
ICValue2 = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1);
if (ICValue2 > ICValue1)
{
ICDiff = (ICValue2 - ICValue1);
}
else
{
ICDiff = ((0xFFFFFFFF - ICValue1) + ICValue2) + 1;
}
ICValue1 = ICValue2;
speed = (90000000.0 / (float)ICDiff)* 60.0/ 4535.1975;
if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_5) == GPIO_PIN_RESET){
speed = -speed;
}
}
}

void Voltage_to_PWM(float voltage){
uint32_t duty;
if(voltage > 0){
if(voltage > 12)voltage = 12;
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_SET);
duty = (uint32_t)(voltage * 1000 / 12);
}
else if(voltage < 0){
if(voltage < -12)voltage = -12;
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_SET);
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HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
duty = (uint32_t)(-voltage * 1000 / 12);
}
else if(voltage == 0){
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
duty = 0;
}

__HAL_TIM_SET_COMPARE (&htim8 , TIM_CHANNEL_3 , duty);
}

void Set_Speed_Open_Loop(float speed){
float voltage;
if(speed > 14)speed = 14;
else if(speed < -14)speed = -14;
voltage = 12 * speed / 14;
Voltage_to_PWM(voltage);
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim8 , TIM_CHANNEL_3);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
if (__HAL_TIM_GET_FLAG(&htim10, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim10, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim10);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
Set_Speed_Open_Loop(6.2);
/* USER CODE END 2 */

We next provide the Python code in Listing 13.5 to obtain motor speed data
at the PC side. In this code, the function get_data_from_MC(NoElements,
com_port, baud_rate) is used to obtain the desired number of speed value from
the microcontroller in float form. NoElements is the number of motor speed sam-
ples, and com_port is the COM port STM32F4 board is connected to. baud_rate
is the UART communication speed which should be set to 2,000,000 bits/s.

Listing 13.5 Obtaining motor speed data from the STM32F4 board in Python

import serial
from ctypes import *
import matplotlib.pyplot as plt

def get_data_from_MC(NoElements , com_port , baud_rate):
port = serial.Serial(com_port , baud_rate , timeout=100)
data1 = [0 for _i in range(NoElements)]
data1f = [0 for _i in range(NoElements)]
for x in range(NoElements):

data = port.read(4)
data1[x] = data[0] | (data[1] << 8) | (data[2] << 16) | (

data[3] << 24)
port.close()
for x in range(NoElements):

dummy = hex(data1[x])
dummy2 = int(dummy, 16)
cp = pointer(c_int(dummy2))
fp = cast(cp, POINTER(c_float))
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data1f[x] = fp.contents.value
return data1f

def main():
y = get_data_from_MC(200, ’com9’, 2000000)
print(y)
t = [0.0 for _i in range(len(y))]
for n in range(len(t)):

t[n] = n * 0.001
plt.plot(t, y)
plt.show()

main()

We provide the C++ and MicroPython codes for the open-loop speed control of
the DC motor in the accompanying book web site. The exact name for these files
are “Listing13_6.cpp” and “Listing13_7.py.” The reader can benefit from them to
realize the open-loop controller in C++ and MicroPython languages, respectively.

We provide the C code for the closed-loop PID speed control of the DC motor in
Listing 13.6. As can be seen in the code, the PID control action is performed inside
the TIM10 interrupt callback function. Peripheral configurations for the STM32F4
board are the same as in the open-loop speed control example. Also, the same
Python code used to obtain the speed data at the PC side can be used for this
example. Finally, we should add the “PID.c” and “PID.h” files to “project->Core-
>Src” and “project->Core->Inc” folders of the active STM32CubeIDE project,
respectively. Hence, we can use PID library functions in digital control.

Listing 13.6 The C code for the closed-loop PID speed control of the DC motor

/* USER CODE BEGIN Includes */
#include "PID.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
uint32_t ICValue1 = 0;
uint32_t ICValue2 = 0;
uint32_t ICDiff = 0;
uint8_t CaptureIndex = 0;
float speed = 0;

PID_struct myPID;
float xSystem[3] = {0};
float ySystem[3] = {0};
int k;
/* USER CODE END PV */

/* USER CODE BEGIN 0 */
void Voltage_to_PWM(float voltage){
uint32_t duty;
if(voltage > 0){
if(voltage > 12)voltage = 12;
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_SET);
duty = (uint32_t)(voltage * 1000 / 12);
}
else if(voltage < 0){
if(voltage < -12)voltage = -12;
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HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
duty = (uint32_t)(-voltage * 1000 / 12);
}
else if(voltage == 0){
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
duty = 0;
}

__HAL_TIM_SET_COMPARE (&htim8 , TIM_CHANNEL_3 , duty);
}

void Set_Speed_Open_Loop(float speed){
float voltage;
if(speed > 14)speed = 14;
else if(speed < -14)speed = -14;
voltage = 12 * speed / 14;
Voltage_to_PWM(voltage);
}

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
xSystem[0] = PID_Output(&myPID, 6.2, ySystem[1]);
Voltage_to_PWM(xSystem[0]);
ySystem[0] = speed;
for (k = 2; k > 0; k--)
{
ySystem[k] = ySystem[k - 1];
xSystem[k] = xSystem[k - 1];

}
HAL_UART_Transmit(&huart1, (uint8_t*)&speed, 4, 1000);
}

void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){
if(CaptureIndex == 0)
{
ICValue1 = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1);
CaptureIndex = 1;
}
else
{
ICValue2 = HAL_TIM_ReadCapturedValue(&htim2, TIM_CHANNEL_1);
if (ICValue2 > ICValue1)
{
ICDiff = (ICValue2 - ICValue1);
}
else
{
ICDiff = ((0xFFFFFFFF - ICValue1) + ICValue2) + 1;
}
ICValue1 = ICValue2;
speed = (90000000.0 / (float)ICDiff)* 60.0/ 4535.1975;
if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_5) == GPIO_PIN_RESET){
speed = -speed;
}
}
}
/* USER CODE END 0 */

/* USER CODE BEGIN 2 */
HAL_TIM_PWM_Start(&htim8 , TIM_CHANNEL_3);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);
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if (__HAL_TIM_GET_FLAG(&htim10, TIM_FLAG_UPDATE) != RESET)
__HAL_TIM_CLEAR_FLAG(&htim10, TIM_FLAG_UPDATE);
HAL_TIM_Base_Start_IT(&htim10);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_3 , GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_4 , GPIO_PIN_RESET);
PID_Init(&myPID, 0.7, 20, 0, 0.01);
/* USER CODE END 2 */

We also provide the C++ and MicroPython codes for closed-loop PID speed
control of the DC motor in the accompanying book web site. The exact name for
these files are “Listing13_9.cpp” and “Listing13_10.py.” The reader can benefit
from them to realize the closed-loop controller in C++ and MicroPython languages,
respectively.

13.5 Summary of the Chapter

Digital control deals with forming a control action to achieve the required perfor-
mance criteria for the system at hand. Arm® Cortex™-M microcontrollers can be
used to realize the control action in software form for this purpose. Therefore,
we considered digital control topics in this chapter. To do so, we started with
transfer function based control. Next, we focused on implementing PID controllers
in software form. Finally, we applied these techniques to control a DC motor.
Hence, we provided an actual digital control application via Arm® Cortex™-M
microcontrollers. We should mention that the coverage of digital control topics was
at the introductory level in this chapter. Therefore, the reader should consult more
advanced books on digital control to grasp this important topic better.

Problems

13.1. Give an example on the control action from real life.

13.2. What is the main difference between open- and closed-loop control?

13.3. Give ramp, parabolic, exponential, and sinusoidal input signals to the DC
motor. Send the obtained output signals (speed of the DC motor) to PC, and plot
them in Python. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

13.4. What is the effect of each PID controller component (as P, I, and D) on the
control action?
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13.5. Implement the methods in Sect. 13.4.3 for position control of the DC motor.
Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

Reference

1. Ünsalan, C., Barkana, D.E., Gürhan, H.D.: Embedded Digital Control with Microcontrollers:
Implementation with C and Python. Wiley - IEEE, Piscataway (2021)
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14.1 About Digital Images

This section summarizes what we should understand from pixel, image repre-
sentation as a matrix, and grayscale and color images. These definitions will be
the building blocks for the following sections. Besides, we will consider how
to represent a digital image in an embedded system (such as the STM32F4
microcontroller).

14.1.1 Mathematical Representation of the Digital Image

A digital image is represented in structured form by its smallest element called pixel.
In early times, the image was generally called picture. Hence, researchers named the
smallest element of the picture as pixel as the shorthand form of “picture element.”
This naming convention stayed the same since then.

Pixels form the digital image which is mathematically represented as a matrix.
Hence, each pixel in the image can be addressed by its two coordinates as horizontal
and vertical. As for mathematical form, we will have the image as I (x, y). Here, x

and y represent the horizontal and vertical matrix coordinates, respectively.
The pixel value represents light intensity at that image location. This is for

grayscale images. For color images, we will have three values as red, green, and
blue. Therefore, let’s consider color and grayscale images next.

Supplementary Information The online version contains supplementary material available at
(https://doi.org/10.1007/978-3-030-88439-0_14).

© Springer Nature Switzerland AG 2022
C. Ünsalan et al., Embedded System Design with Arm Cortex-M Microcontrollers,
https://doi.org/10.1007/978-3-030-88439-0_14

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88439-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-88439-0_14
https://doi.org/10.1007/978-3-030-88439-0_14


508 14 Introduction to Digital Image Processing

Fig. 14.1 Grayscale
Mandrill image

14.1.2 Grayscale and Color Images

A grayscale image contains intensity values. Hence, we will have I (x, y) as
introduced in the previous section. Entries of this matrix will be in eight-bit unsigned
character form most of the times. If the matrix entry has value zero, this means
that the intensity there is lowest (black). The maximum value for the eight-bit
unsigned integer form is 255. Hence, if the pixel has value 255, this means that
the intensity there is highest (white). In a grayscale image, pixel values between 0
and 255 represent the intermediate light intensity (between black and white). We
next provide a sample grayscale image, called Mandrill, in Fig. 14.1. This image is
formed by 320×240 pixels.

The color image represents not only the intensity value at an image location
but the color information there as well. In the following sections, we will see
that a digital camera provides different color-formatted output. We can assume
that the red, green, and blue color representation is suitable at this point. Hence,
each pixel has three color components as red, green, and blue. We may have each
color component represented by eight-bit unsigned character form. Hence, the color
component value between 0 and 255 will correspond to the lowest and highest values
there as in grayscale images. We next provide color version of the Mandrill image in
Fig. 14.2. As a side note, this image is in grayscale form in the printed manuscript.

14.1.3 Representing the Digital Image in the STM32F4
Microcontroller

We pick the STM32F4 microcontroller as the embedded system in this chapter.
Therefore, we should represent the image such that it can be processed in the
microcontroller. We form image representations for this purpose in C, C++, and
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Fig. 14.2 Color Mandrill
image

Table 14.1 Image size
standards for the camera and
LCD modules

Format Name Size (width × height)

CIF Common intermediate format 352 × 288

QCIF Quarter CIF 176 × 144

VGA Video graphics array 640 × 480

QVGA Quarter VGA 320 × 240

QQVGA Quarter QVGA 160 × 120

SVGA Super VGA 800 × 600

XGA Extended graphics array 1024 × 768

MicroPython languages. While doing so, we benefit from standard definitions in the
camera and LCD modules. Therefore, let’s start with the image size.

There are image size standards for both camera and display modules. We tabulate
them in Table 14.1. In this table, we only provide common intermediate format
(CIF), video graphics array (VGA), and extended graphics array (XGA). CIF has
been used in PAL- and NTSC-based TV and video systems. VGA and its derivatives
have been used in display modules. Cameras also adopted these standards. Recent
display modules have different standards with width and height ratio as 16:9 or
16:10. However, we will not consider them in this book. Since the camera module
and LCD on the STM32F4 board support VGA and its derivatives, we will only
focus on them in this chapter.

Throughout the book, we will use QVGA and QQVGA image formats
in Table 14.1. Therefore, we formed constant declarations for them as
IMAGE_RES_QVGA and IMAGE_RES_QQVGA. We will use them in both image- and
camera-based operations.

Most camera and display modules have standard grayscale (monochrome) and
color image formats. We tabulate them in Table 14.2. We will introduce how a pixel
is represented in bitwise form for these formats in Sect. 14.5.4. As a side note, we
introduced the ARGB888 format for LCD operations in Sect. 11.3.
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Table 14.2 Grayscale and
color image formats for the
camera and LCD modules

Representation Bytes per pixel (bpp)

Grayscale 1

RGB444 2

RGB555 2

RGB565 2

RGB888 3

YUV422 2

ARGB888 4

Throughout the book, we will use RGB565, YUV422, and grayscale
formats in Table 14.2. Therefore, we formed constant declarations for them
as IMAGE_FORMAT_RGB565, IMAGE_FORMAT_YUV422, and IMAGE_FORMAT_
GRAYSCALE. We will use them in both image- and camera-based operations.

We have two definitions for representing the digital image in embedded systems.
These are frame and line. The frame represents the overall image. The line
represents one row of the image. We explained these in connection with the LCD
usage in Chap. 11. The same definitions also apply to this chapter.

We can store a digital image either in matrix or array form. Matrix representation
is the same as the mathematical form of the image in Sect. 14.1. If we prefer to
represent the image in array form, we should perform array operations to reach a
specific row and column numbered pixel value. As a side note, both matrix and
array representations are kept in the same way in memory. Only how we reach and
process them differs in the code.

14.1.3.1 Image Representation in C Language
We can represent an image in structured form in C language. This structure holds all
the necessary information about the image. We should also allocate RAM to store
the image. Therefore, we provide the image structure and RAM allocation function
to be used with it next.

typedef struct _image{
uint8_t *pData; // pointer to the image data array
uint16_t width; // image width in pixels
uint16_t height; // image height in pixels
uint32_t size; // image size in bytes, equal to width*height

*bpp
uint8_t format; // image format, can be one of

IMAGE_FORMAT_RGB565 , IMAGE_FORMAT_YUV422 or
IMAGE_FORMAT_GRAYSCALE

} ImageTypeDef;

void IMAGE_init(Image *Pimg, uint8_t res, uint8_t format);
/*
Pimg: pointer to the ImageTypeDef struct
res: specifies the image resolution to be initialized and can be

one of IMAGE_RES_QVGA or IMAGE_RES_QQVGA
format: specifies the image format to be initialized and can be

one of IMAGE_FORMAT_RGB565 , IMAGE_FORMAT_YUV422 or
IMAGE_FORMAT_GRAYSCALE

*/
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The constant IMAGE_FORMAT_RGB565 indicates that we are using a color image
represented by red, green, and blue components. Moreover, the number of bits
assigned to these color bands are five, six, and five, respectively. The same format
also applies to other mentioned color constants.

We provide a usage example for the structure and its initialization function for
a QVGA color image with RGB565 format next. Here, we first define an image
via the struct ImageTypeDef. Then, we set the image properties via the function
IMAGE_init.

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
/* USER CODE END 2 */

We formed an image processing library in C language. This library has the
struct ImageTypeDef and its initialization function. This library is available in
the accompanying book web site. The reader can reach this library and use the
mentioned structure definition and function in his or her code. To do so, the
“image.c” file in the library should be copied to the “project->Core->Src” folder
of the active STM32CubeIDE project. Likewise, the “image.h” file in the library
should be copied to the “project->Core->Inc” folder of the project.

14.1.3.2 Image Representation in C++ Language
We formed the IMAGE class in C++ language to represent an image. The IMAGE
class has all the properties defined in the C struct ImageTypeDef introduced in
the previous section. The class has one function called init which allocates RAM
space for the constructed image. We provide details of the IMAGE class next.

IMAGE(uint8_t res = IMAGE_RES_QVGA , uint8_t format =
IMAGE_FORMAT_RGB565);

/*
res: specifies the image resolution to be initialized and can be

one of IMAGE_RES_QVGA or IMAGE_RES_QQVGA
format: specifies the image format to be initialized and can be

one of IMAGE_FORMAT_RGB565 , IMAGE_FORMAT_YUV422 or
IMAGE_FORMAT_GRAYSCALE

*/

void init(uint8_t res, uint8_t format);

We provide a usage example for the IMAGE class and its initialization function
for a QVGA color image with RGB565 format in two different methods next. In the
first method, we declare the image by the constructor. Then, we set its parameters
by the init function of the class. In the second method, we set image parameters
within the constructor and form the image class.

//first method
IMAGE img1;
img1.init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
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//second method
IMAGE img2(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);

As in C language, we formed an image processing library in C++ language. This
library consists of the IMAGE class. This library is available in the accompanying
book web site. The reader can reach this library and use the mentioned image class in
his or her C++ code. In order to use the class, the files “image.cpp” and “image.hpp”
in the library should be copied to the active project folder.

14.1.3.3 Image Representation in MicroPython
We formed the image module in MicroPython to represent, modify, and use an
image. In this module, there is a custom struct image_obj_t which holds all the
necessary information about the image. The module also has a function called init
which allocates RAM space for the constructed image and returns image_obj_t as
the MicroPython object. The module also has a function called image which creates
the image structure with given image parameters and returns image_obj_t as the
MicroPython object. There are also width, height, size, format, resolution,
and array functions to reach image structure parameters individually. We provide
details of the image module next.

typedef struct _image_obj_t {
mp_obj_base_t base;
uint8_t *pData; // pointer to the image data array
uint16_t width; // image width in pixels
uint16_t height; // image height in pixels
uint32_t size; // image size in bytes, equal to width*height

*bpp, bpp stands for (bytes per pixel)
uint8_t format; // image format, can be one of

IMAGE_FORMAT_RGB565 , IMAGE_FORMAT_YUV422 or
IMAGE_FORMAT_GRAYSCALE

uint8_t resolution; // image resolution , can be one of
IMAGE_RES_CUSTOM , IMAGE_RES_VGA , IMAGE_RES_QVGA or
IMAGE_RES_QQVGA

} image_obj_t;

image(pData, width, height, resolution , format)
/*
pData: bytearray which holds the image data as bytes
width: image width in pixels
height: image height in pixels
resolution: specifies the image resolution to be initialized and

can be one of IMAGE_RES_CUSTOM , IMAGE_RES_VGA ,
IMAGE_RES_QVGA or IMAGE_RES_QQVGA. width and height
parameters are ignored if resolution is not selected as
IMAGE_RES_CUSTOM.

format: specifies the image format to be initialized and can be
one of IMAGE_FORMAT_RGB565 , IMAGE_FORMAT_YUV422 or
IMAGE_FORMAT_GRAYSCALE

*/

init(width, height, resolution , format)

width(img)
/*

img: created image object based on image_obj_t struct
*/
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height(img)

size(img)

resolution(img)

format(img)

We provide a usage example for the image module in two different methods
next. In the first method, we create an image object with 2×2 byte array data with
GRAYSCALE format. In the second method, we create an empty image object for a
QVGA color image with RGB565 format. We also print the width of the first image
object and height of the second image object in the code.

import image
//first method
imgBytes = bytearray([1, 2, 3, 4])
img1 = image.image(imgBytes , 2, 2, IMAGE_RES_CUSTOM ,

IMAGE_FORMAT_GRAYSCALE)

//second method
img2 = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);

print(image.width(img1))
print(image.height(img2))

As in C language, we formed an image processing library to be used in
MicroPython. The reader can benefit from the custom MicroPython firmware
provided in the book web site to use this library. To do so, the code line import
image should also be added to the “main.py” file.

14.2 Image Transfer Between the PC and STM32F4
Microcontroller

The first step in digital image processing in the STM32F4 microcontroller is feeding
the image to the microcontroller. We have two options here. The first one is
transferring the image from PC. We will cover this option in this section. We will
also cover the reverse operation such that the processed image in the STM32F4
microcontroller can be sent back to PC for storage or other purposes. The second
option for feeding the image to the microcontroller is by acquiring it with a camera
module. We will cover this procedure in Sect. 14.5.

14.2.1 Setup in the PC Side

Before feeding the image to the STM32F4 microcontroller, we should read it on
PC. The best option for this operation is using the Python OpenCV library. This
library can be installed to PC by the command pip install opencv-python. As
the library is installed, it allows us to read an image and display it on the PC screen.
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As a side note, OpenCV is also available in C++, Java, and JavaScript languages.
The reader can also benefit from them for his or her own applications.

We next provide the Python code in Listing 14.1 to read an image and display it
on PC screen. In this code, we import the OpenCV library first. Then, we read the
color image, display it on the screen, wait for a key press, and close the window.
Please make sure that the image to be read is in the same folder as with the executed
Python code. Or, the exact address should be given for the image file to be read by
OpenCV.

Listing 14.1 Reading and displaying the Mandrill image via OpenCV in Python

import cv2

#read the color image
img = cv2.imread(’mandrill.tif’)

#display the color image
cv2.imshow(’Color Image’,img)
cv2.waitKey(0)

cv2.destroyAllWindows()

#write the image to a file
#cv2.imwrite(’mandrill_store.tif’,img)

We can save an image in OpenCV. To do so, we should enable the command
cv2.imwrite in Listing 14.1. Hence, the reader can save the image to the working
directory. This will be helpful when we receive an image from the STM32F4
microcontroller in the following sections.

As we read the image in the PC side, the next operation is transferring it
to the STM32F4 microcontroller. Likewise, we may want to transfer an image
from the microcontroller to PC. We will benefit from UART communication for
both operations. Therefore, we should first install the pyserial library to PC by
executing the command pip install pyserial in the command window. Next,
we should obtain the COM port the STM32F4 board is connected to. To do so, we
should check “Device Manager -> Ports (COM & LPT)” in the Windows operating
system. There should be a device listed as “STMicroelectronics STLink Virtual
COM Port . . . .” We will use the COM port defined there in our Python code. Let’s
assume that the mentioned COM port is “COM5.” Please note that the same settings
should be done for a PC with another operating system such as Linux. Therefore,
we kindly ask the reader to check his or her operating system working principles for
this purpose.

In order to simplify data transfer between the PC and STM32F4 microcontroller,
we formed the “PC_Image_Transfer_Library.” This library contains four functions
as follows. The init() function gets the COM port name as input. It opens the
port and initializes the image to be transferred. The pollTransferRequest()
function starts data transfer. The function sendImage() sends the image from
PC to the STM32F4 microcontroller. The function readImage() sends the
image from the STM32F4 microcontroller to PC. The user should press the
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ESC key while the image window is active to stop the operation. We provide
the “PC_Image_Transfer_Library” as a Python file in the accompanying book web
site.

We next provide the sample code in Listing 14.2 to transfer the Mandrill image
from PC to the STM32F4 microcontroller. This code first installs necessary libraries
including “PC_Image_Transfer_Library.” As we run the code on PC, it waits for
a request from the STM32F4 microcontroller. As the request comes, the code
starts transferring data. As a side note, the code to be executed in the STM32F4
microcontroller can be written in C, C++, or MicroPython language since we are
using UART communication in all these.

Listing 14.2 Image transfer code between the PC and STM32F4 microcontroller

import PC_Image_Transfer_Library as serialImage

serialPort = ’COM5’
Img = "mandrill.tiff"

serialImage.init(serialPort)

while 1:

# press ESC to terminate
reqType = serialImage.pollTransferRequest()

if (reqType == serialImage.IMAGE_READ):
serialImage.sendImage(Img)

elif (reqType == serialImage.IMAGE_WRITE):
serialImage.readImage()

The code in Listing 14.2 works as follows. As the code starts running, it
continuously listens to the serial port the STM32F4 board is connected to. If
a request comes from the microcontroller, the code checks the first eight bytes
consisting of start, request type (image read or write), image size, and format
bytes. If the microcontroller has asked for receiving an image, then the predefined
image is read in the PC. It is resized and modified for the required image format
(such as RGB565 or YUV422). Then, the PC sends the image to the STM32F4
microcontroller. If the microcontroller has asked for sending image data, the Python
code in PC receives the image, opens a folder called “capture,” and saves the
received image to this folder in “jpeg” format. The name of the saved image will
contain the actual date and time.

14.2.2 Setup and Display in the STM32F4Microcontroller Side

As the PC side becomes ready for data transfer, we should next set up the STM32F4
microcontroller. In this section, we provide ways to do this in C, C++, and
MicroPython languages. Besides, we also display the received image on the LCD
of the STM32F4 board. As a side note, steps for the display operation have been
introduced in Chap. 11.
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Before explaining the setup functions in C, C++, and MicroPython languages, we
should mention some common properties. We will be using the USART1 module
for image transfer. We explained how to do this in Chap. 8. In this chapter, we set
the pins PA9 and PA10 of the STM32F4 microcontroller for UART communication.
We use the USART1 module in UART mode with full-duplex, eight-bit, no parity,
one stop bit mode. The baud rate is set to 2 MBits/s. Pins PA9 and PA10 should
have “maximum output speed” settings as “very high” under GPIO properties. If all
these settings are done correctly, we can transfer a QVGA image in 1.5 s.

14.2.2.1 Setup and Display via C Language
We formed the image transfer library to handle image transfer between the PC
and STM32F4 microcontroller in C language. To use this library, we should add
the “serialImage.c” and “serialImage.h” files to the folders “project->Core->Src”
and “project->Core->Inc” for the active STM32CubeIDE project, respectively. We
should also add the image processing library to our project. Then, we should set
UART communication parameters on the PC side as explained in the previous
section.

Our image transfer library has two functions as SERIAL_imageCapture and
SERIAL_imageSend. Both use the struct ImageTypeDef introduced in Sect. 14.1.3.
We provide detailed information on them next.

void SERIAL_imageCapture(Image *Pimg)
/*
Pimg: pointer to the ImageTypeDef struct
*/

void SERIAL_imageSend(Image *Pimg)

The function SERIAL_imageCapture stores the image (sent from PC) to the
STM32F4 microcontroller. The function first sends a request to PC to receive image
with size and format information. Then, it waits for the response. As the response is
received from PC, data transfer begins. The function SERIAL_imageSend sends the
image in the STM32F4 microcontroller to PC. To do so, it first sends a request to PC
to send data with size and format information. As the code receives the response,
the image is sent to PC.

We can also display the received image on the LCD of the STM32F4 board. To
do so, we should make necessary adjustments on LCD usage with SPI as explained
in Sects. 11.4 and 11.5.1. We provide the C code in Listing 14.3 to show how to
perform this operation.

Listing 14.3 Displaying the received image on the LCD of the STM32F4 board, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "ili9341.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */
/* USER CODE BEGIN 2 */
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IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
ILI9341_init(SCREEN_HORIZONTAL);

SERIAL_imageCapture(&img);
ILI9341_drawImage(&img, 0, 0);
/* USER CODE END 2 */

In Listing 14.3, an image structure is formed first by ImgeTypeDef. Then, it is
initialized. Afterward, the LCD (to be used by SPI) is initialized. Then, the image
is received from UART, saved in the structure, and displayed on the LCD. To note
here, the Python code in Listing 14.2 should have been running on the PC side at
the same time.

14.2.2.2 Setup and Display via C++ Language
We also formed the image transfer library to handle image transfer between the
PC and STM32F4 microcontroller in C++ language. To use this library, we should
add the files “serialImage.cpp” and “serialImage.hpp” to the active STM32CubeIDE
project folder. We should also add the image processing library (for C++ language)
to our project. As a side note, all these library files are provided in the accompanying
book web site. We formed a class SERIALIMAGE within the image processing
library. This class has two functions as capture and send. These work in the same
way as their C counterparts introduced in the previous section. We provide detailed
information on the class and its functions next.

SERIALIMAGE()

void capture(IMAGE Pimg);
/*
Pimg: pointer to the IMAGE object
*/

void send(IMAGE Pimg);

The function capture stores the image, initialized by the class object
SERIALIMAGE, coming from PC. The function first sends a request to PC to receive
image with size and format information. Then, it waits for the response. As the
response is received from PC, image transfer begins. The function send sends the
image in the STM32F4 microcontroller to PC. To do so, it first sends a request to PC
to send an image with size and format information. As the microcontroller receives
the response, the image is sent to PC.

We can also display the received image on the LCD of the STM32F4 board. To
do so, we should make necessary adjustments for LCD usage with SPI as explained
in Sects. 11.4 and 11.5.1. We provide the C++ code in Listing 14.4 to show how to
perform this operation.

Listing 14.4 Displaying the received image on the LCD of the STM32F4 board, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "ili9341.hpp"
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#include "serialImage.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
ILI9341 ili9341(SCREEN_HORIZONTAL);
SERIALIMAGE serialImage;

int main()
{
serialImage.capture(&img);
ili9341.drawImage(&img, 0, 0);

while (true);
}

The C++ code in Listing 14.4 works in the same way as its C counterpart given
in Listing 14.3. As the code runs, it asks for receiving a QVGA image in RGB565
format from PC. There is one important issue here. Mbed Studio opens the serial
terminal while debugging the code. If the Python code in Listing 14.2 has not been
executed on PC before the debug operation, Python gives error indicating that the
port is in use. To avoid this error, either the user should run the image transfer code
in Listing 14.2 beforehand or, after debugging the code in Mbed Studio, the terminal
window there should be closed.

14.2.2.3 Setup and Display via MicroPython
We formed the image transfer module to handle image transfer between the PC and
STM32F4 microcontroller in MicroPython. To use this module, the reader should
use the custom MicroPython firmware provided in the book web site. The code line
import serialImage should also be added to the “main.py” file. Then, the reader
should initialize the serialImage module using init() first. UART5 module is
enabled with full-duplex, eight-bit, no parity, one stop bit mode with this function.
The baud rate is set to 921,600 bits/s. Pins PD2 and PC12 are set as Rx and Tx,
respectively. This module also has two functions as capture and send. These
work in the same way as their C counterparts introduced in the previous section.
We provide detailed information on the class and its functions next.

init();

capture(img);
/*
img: created image object based on image_obj_t struct
*/

send(img);

The function capture stores the image coming from PC. To do so, it first sends
a request to PC to receive the image with size and format information. Then, it waits
for the response. As the response is received from PC, image transfer begins. The
function send sends the image in the STM32F4 microcontroller to PC. To do so, it
first sends a request to PC to send the image with size and format information. As
the microcontroller receives the response, the image is sent to PC.
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We can also display the received image on the LCD of the STM32F4 board. To
do so, we should make necessary adjustments for LCD usage with SPI as explained
in Sects. 11.4 and 11.5.1. We provide the MicroPython code in Listing 14.5 to show
how to perform this operation. This code works in the same way as its C counterpart
given in Listing 14.3.

Listing 14.5 Displaying the received image on the LCD of the STM32F4 board, the MicroPython
code
import image
import serialImage
import lcdSPI

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)
lcdSPI.init(0)
serialImage.init()
serialImage.capture(img)
lcdSPI.drawImage(img, 0, 0)

main()

14.3 Digital Camera as the Image Sensor

Digital camera can be used to acquire images in an embedded system. Therefore,
we will introduce working principles of a generic digital camera in this section.
Afterward, we will focus on the OV7670 camera module to be used throughout the
book and explore its properties. We will also explain how to set up the camera
module in this section. These will lead to image acquisition from the OV7670
camera module in Sect. 14.5.

14.3.1 Working Principles of a Digital Camera

We provide a generic digital camera module in Fig. 14.3. As can be seen in this
figure, there are five main modules in the camera. These are optics and image sensor,
preprocessing, camera interface, timing and synchronization, and control interface
and registers. Besides, there are input and output pins for the digital camera as
follows. The clock signal is fed to the camera through its XCLK pin. SDA and
SCK pins are used for controlling the camera. D[n:0] represents n+1 bit parallel
data output pins. PIXCLK is the pixel output clock providing sampling times for
data output. Finally, VSYNC and HSYNC are synchronization output signal pins.
We provide detailed explanation of digital camera modules as well as related pins
next.

14.3.1.1 Optics and Image Sensor
Optics module of the digital camera is composed of the main lens and microlenses.
The main lens is located outside the camera module. It focuses light rays coming
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Fig. 14.3 A generic digital camera module

from the outside world to the image sensor. Microlenses distribute the focused light
to color filters in the image sensor.

The image sensor is composed of transistors (most of the times being type
CMOS) which act as light-sensitive photosensors. Each sensor generates voltage or
current proportional to the light falling on it. Hence, an analog signal is generated.
We will process this signal and form a digital image by the help of camera modules.

We can associate image sensor elements with pixels in the constructed image. If
we are acquiring a grayscale image, we can say that each processed sensor element
output corresponds to a pixel in the acquired image. If the acquired image is in
color form, then extra operations may be needed to construct a pixel value from
neighboring sensor elements.

The image sensor has color filters on it. There is a specific structure in the
placement of color filters such as the Bayer pattern. This pattern is implemented
for arranging red, green, and blue color filters on the image sensor.

14.3.1.2 Preprocessing
Preprocessing module of the digital camera is composed of analog and digital
blocks. The analog block processes the signal coming from image sensors and
converts them to digital form. The digital block processes the image formed by
digitized analog signals.

We can summarize operations done in the analog block as follows. The first
operation is gain control. It adjusts each image sensor element’s analog signal
response to different light levels. The second operation is black-level compensation.
This operation is done to eliminate electronic signal noise in image sensor elements.
Hence, we expect to have black regions to be represented as perfect black in the
image. The ADC operation converts the analog signal to digital form. Generally,
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color channels are converted to digital form separately. The ADC module used in
the operation generally has eight-bit resolution.

We can summarize the operations done in the digital block as follows. White
balance is done to obtain perfect white color in ambient light. This is done by
adjusting the gain in color channels. Gamma correction is applied to modify the
color intensity obtained from different channels. Color control aims to correct
errors caused by non-ideal microlens characteristics. Brightness and contrast control
adjusts these values based on the ambient light level. Sharpness adjusts image edges
being sharp or smooth. Denoising eliminates noise originating from image sensor
elements. Defect pixel correction aims to eliminate constant pixel values (such as
always set to white or black) by the help of neighboring pixel values. Lens correction
aims to correct nonuniform light distribution in image sensors originating from the
lens. Image scale and zoom operations can also be done in the digital block.

14.3.1.3 Camera Interface
Camera interface module feeds the digital image data and synchronization signals
from the digital camera. This output can be in serial or parallel form. There are
standards defined by MIPI used for this purpose [1]. Most cameras use these
standards. For more information on them, please see the mentioned reference. In
nonstandard camera outputs, generally UART or SPI communication is used. There
is also the low-voltage differential signaling standard (LVDS). For more information
on it, please see [1].

14.3.1.4 Timing and Synchronization
The timing and synchronization module in the digital camera is mainly responsible
for generating and distributing internal timing and external synchronization signals
VSYNC, HSYNC, and PIXCLK. VSYNC indicates that a frame is being trans-
mitted. HSYNC indicates that a line is being transmitted. PIXCLK indicates that
a new pixel byte is available. Polarity of these signals can be adjusted via camera
registers. Timing diagram of these signals is illustrated in Fig. 14.4a. Output data pin
timing diagram can be observed with respect to the PIXCLK signal in Fig. 14.4b.
The DCMI module, to be introduced in Sect. 14.4, should be configured according
to these signals.

Synchronization can be internal or external. In the external case, we can use
VSYNC and HSYNC pins. In the internal case, we send bytecode data at the
beginning and end of each frame and line. There are several modes for this
operation. The DCMI module in the STM32F4 microcontroller supports two such
modes. The first one is called ITU656 which uses four bytecodes. The second one
uses one bytecode. Although it is possible to use these modes to acquire image from
the camera, we did not pursue this path in this book.

14.3.1.5 Control Interface and Registers
The control interface and registers control all mentioned digital camera modules.
Registers are set by serial input from an external device such as microcontroller. The
interface is generally based on either I2C or its derivatives. There are approximately
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Fig. 14.4 Synchronization signal and data pin timing diagram. (a) Synchronization signals. (b)
Data pin timing with respect to PIXCLK

100 registers in the OV7670 camera. Since these registers depend on the camera at
hand, we strongly suggest the reader to check the selected camera datasheet.

14.3.2 Image Data Representation in Digital Cameras

There are different image data representations used in digital cameras. We can group
them into three categories as raw, processed, and compressed. Let’s explain each
category in detail.

14.3.2.1 Raw Form
The first image data representation is called raw. Here, the image sensor output
is processed by the analog block in the preprocessing module. Then, the obtained
analog signal is converted to digital form by the ADC module. We can either have
three separate sensors, with their specific color filters, for three colors as red, green,
and blue. This is raw image data. Or, there is a pattern for color image filters on the
image sensor. If the color filters on the image sensor are arranged in Bayer pattern,
then we call the output as raw Bayer.

We should also explain why the Bayer pattern is used. As mentioned before,
each pixel is obtained from three separate color filters in raw form. This means we
will need three separate microlenses and color filters for each pixel. If the Bayer
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pattern is used, each pixel is represented by one sensor, one microlens, and one
color filter. Hence, the number of elements used for obtaining the color image with
the same image resolution falls to one third in this setup. However, we should
apply demosaicing (debayering) to obtain the actual RGB image. To do so, the
interpolation operation should be applied to each image pixel and its neighbors.
As a result, an approximate RGB representation will be obtained.

14.3.2.2 Processed Form
The second image data representation is called processed. Here, the raw data is
fed to the digital block in preprocessing module. The obtained output is called
processed. If the raw data is formed by three sensors per pixel, then we can obtain the
processed form directly. If the Bayer pattern is used, then we obtain the processed
Bayer form.

14.3.2.3 Compressed Form
The third image data representation is called compressed. Some cameras may
provide compressed image in jpeg form. This speeds up data transfer between
the camera and connected device such as microcontroller. To benefit from the
compressed data, the receiving device should have a jpeg decoder. The STM32F4
microcontroller does not have such a decoder in hardware. Instead, this is done
by software, more specifically LIBJPEG middleware under STM32CubeMX. The
OV7670 camera module does not provide output in jpeg form. Therefore, we did
not consider the compressed image data form in this book.

14.3.3 The OV7670 CameraModule

We will use the OV7670 camera module throughout the book. This module is
low cost (can be found under $5), is easy to purchase, and can be used with
microcontrollers. Front view of the OV7670 camera module is as in Fig. 14.5. In
fact, there are two versions of the OV7670 camera module as without and with
FIFO buffer. We will use the former version throughout the book.

The OV7670 camera module has CMOS image sensor block produced by
OmniVision. This sensor can provide VGA images at 30 frames per second (fps).
The camera module has analog and digital blocks. The analog block has exposure
control, gain control, white balance, band filter, and black-level calibration proper-
ties. The digital block consists of color saturation, hue, gamma, sharpness (edge
enhancement), anti-blooming, noise reduction, and defect correction functions.
Hence, the camera module can preprocess and send the acquired image to the
STM32F4 microcontroller through its output pins. The camera module can be
configured through its serial camera control bus (SCCB) interface. SCCB has
characteristics close to I2C. The reader will not deal with this interface since we
will handle its usage within our functions.

Pinout of the OV7670 camera module is given in Table 14.3. As can be seen in
this table, there are three synchronization signals for the OV7670 camera module
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Fig. 14.5 The OV7670
camera module

Table 14.3 Pinout of the
OV7670 camera module

Pin Description

SIOC Serial interface clock

SIOD Serial interface data I/O

VSYNC Vertical sync output

HREF Horizontal reference

PCLK Pixel clock output

D0–D7 Digital data output

PWDN Power down input

XCLK System clock input

RESET Reset input

3V3 Power supply

GND Ground

as VSYNC, HREF, and PCLK. VSYNC indicates that a frame is being transmitted.
HREF indicates that a line is being transmitted. PCLK indicates that a new byte is
available. Polarity of these signals can be adjusted via camera registers. Digital data
output from the OV7670 camera is obtained from eight pins labeled D0–D7.

The OV7670 image sensor supports several output formats. These can be listed
as raw RGB, YUV/YCbCr422, GRB422, RGB565, and RGB555. We will benefit
from the RGB565 and YUV/YCbCr422 in the following sections.

14.3.4 Setting Up the OV7670 CameraModule

We should set up the OV7670 camera before acquiring an image from it. Although
we will perform these operations by functions in our camera library, we should
briefly explain how they work. Therefore, we handled this issue next.
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14.3.4.1 Setup via C Language
We formed the camera library to handle OV7670 camera setup functions in C
language. To use them, we should add the “ov7670.c” file to “project->Core->Src”
folder of the active project. We should also add the “ov7670.h” and “ov7670_regs.h”
files to “project->Core->Inc” folder of the project. We should also add the image
processing library to our project.

The camera setup functions within our library are as follows. The function
OV7670_init initializes the camera to its default settings. It also sets the camera to
work in the desired size and format. The function OV7670_init initializes the cam-
era by setting its resolution and image format for image acquisition. The function
OV7670_reset resets the camera. Whenever this function is called, the function
OV7670_init should be called afterward. We can use the initialization function
as OV7670_init(IMAGE_RES_QVGA, IMAGE_FORMAT_RGB565). We provide the
detailed explanation of the camera calibration functions next.

void OV7670_init(uint8_t res, uint8_t format);
/*
res: specifies the image resolution to be captured and can be

one of IMAGE_RES_QVGA or IMAGE_RES_QQVGA
format: specifies the image format to be initialized and can be

one of IMAGE_FORMAT_RGB565 or IMAGE_FORMAT_YUV422
*/

void OV7670_reset();

We should also set project properties to use the OV7670 camera module. First
and most important of all, the OV7670 camera module needs a clock signal to
operate with clock frequency between 10 and 48 MHz. The optimal clock frequency
is 24 MHz. We will feed the clock signal to the camera from the STM32F4
microcontroller. We will use MCO2 output of the microcontroller for this purpose.
To do so, pin PC9 of the microcontroller should be connected to the XCLK pin of the
OV7670 camera. The PC9 pin mode should be set as “RCC_MCO_2.” Besides, the
GPIO “maximum output speed” setting of the pin should be “very high.” Please see
Sect. 6.1.3 for these settings. As we perform these adjustments, it becomes possible
to acquire images at 30 fps, which is the maximum speed the camera can provide.

We should also set some parameters in the “clock configuration” section of
STM32CubeMX. To be more specific, we should set “HCLK” to “180MHz”;
“PLLI2S” “N” to “192,” “R” to “4”; “MCO2 Source Mux” to “PLLI2SCLK,” and
the divider at the output of “MCO2 Source Mux” to “4.” As all these settings are
done, the main system will have 180 MHz clock signal. The MCO2 output, to be
connected to the OV7670 camera, will have 24 MHz clock signal.

As clock settings are done, the next step is setting camera registers via SCCB
interface. To do so, we will use the I2C module in blocking mode. We will also
discard the ACK signal here. To do so, we should select the “I2C mode for
Connectivity - I2C1” in the leftmost part of STM32CubeMX. The communication
speed should be set as 100,000 Hz. The remaining parameters can be kept in their
default state. We should set pins PB8 and PB9 in the STM32F4 microcontroller
as “I2C1_SCL” and “I2C1_SDA” modes, respectively. We should connect the pins
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Table 14.4 Connecting the
STM32F4 board to the
OV7670 camera module

STM32F4 board STM32F4 microcontroller Camera module

pin pin function pin

VDD Power supply 3V3

GND Ground GND

PB8 I2C1_SCL SIOC

PB9 I2C1_SDA SIOD

PG9 DCMI_VSYNC VSYNC

PA4 DCMI_HSYNC HREF

PA6 DCMI_PIXCLK PCLK

PC9 MCO2 XCLK

PE6 DCMI_D7 D7

PE5 DCMI_D6 D6

PD3 DCMI_D5 D5

PE4 DCMI_D4 D4

PG11 DCMI_D3 D3

PG10 DCMI_D2 D2

PC7 DCMI_D1 D1

PC6 DCMI_D0 D0

NRST Reset RESET

GND Ground PWDN

PB8 and PB9 to the OV7670 camera module pins SIOC and SIOD, respectively. For
more information on these settings, please see Sect. 8.4.3.

Finally, we should connect reset pin of the camera to VDD (or NRST) pin of
the STM32F4 board. If we connect the reset pin of the camera to NRST pin of the
board, then the camera also resets when the STM32F4 microcontroller is reset. We
should connect the PWDN pin of the camera to GND pin of the STM32F4 board.
We tabulate all the mentioned pin connections between the STM32F4 board and
OV7670 camera module in Table 14.4. In this table, we also tabulated the STM32F4
microcontroller pin functions which will be helpful in the following sections.

14.3.4.2 Setup via C++ Language
We can also set up the OV7670 camera module via C++ language. To do so, we
formed a camera library. To use it, we should add the “ov7670.cpp,” “ov7670.hpp,”
and “ov7670_regs.h” files to the active project folder. Besides, we should add the
image processing library in C++ language to the project folder.

Our camera library has necessary class definitions and associated functions to
set up the OV7670 camera. To be more specific, we have a class OV7670. The class
function init initializes the camera to its default settings. It also sets the camera to
work in the desired image size and format. The function reset resets the camera.
Whenever this function is used, the function init should be called afterward. We
provide detailed explanation of the OV7670 class and its functions next.
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OV7670(uint8_t res = IMAGE_RES_QVGA , uint8_t format =
IMAGE_FORMAT_RGB565);

/*
res: specifies the image resolution to be captured and can be

one of IMAGE_RES_QVGA or IMAGE_RES_QQVGA. Default value is
IMAGE_RES_QVGA

format: specifies the image format to be initialized and can be
one of IMAGE_FORMAT_RGB565 or IMAGE_FORMAT_YUV422. Default
value is IMAGE_FORMAT_RGB565

*/

void init(uint8_t res, uint8_t format);

void reset();

We provide a usage example of the OV7670 class and its functions next. Here, we
form an object called camera from the class OV7670. Then, we reset and initialize
the camera object by associated functions.

OV7670 camera;

camera.reset();
camera.init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);

We do not have to perform any peripheral or clock settings in C++ language.
These are done automatically via our camera library functions. Therefore, the user
should only connect the OV7670 camera module to the STM32F4 board as tabulated
in Table 14.4.

14.3.4.3 Setup via MicroPython
We can also set up the OV7670 camera module via MicroPython. To do so, we
formed a camera module named ov7670. To use it, the reader should use the
custom MicroPython firmware provided in the book web site. The code line import
ov7670 should also be added to the “main.py” file. This module has three functions
as init, reset, and read_ID. The function init initializes the camera to its
default settings. It also sets the camera to work in the desired image size and
format. The function reset resets the camera. Whenever this function is used, the
function init should be called afterward. The function read_ID is used to read the
predefined ID of the OV7670 camera. We provide the detailed explanation of the
OV7670 class and its functions next.

init(res, format);
/*
res: specifies the image resolution to be captured and can be

one of IMAGE_RES_QVGA or IMAGE_RES_QQVGA.
format: specifies the image format to be initialized and can be

one of IMAGE_FORMAT_RGB565 or IMAGE_FORMAT_YUV422.
*/

reset();

read_ID();

We provide a usage example of the ov7670 module and its functions next. Here,
we first import the ov7670 module. Then, we reset and initialize the camera module
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by associated functions. Finally, we read and print the ID of the OV7670 camera
module.

import ov7670

ov7670.reset()

ov7670.init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)

print(ov7670.read_ID)

We do not have to perform any peripheral or clock settings in MicroPython.
These are done automatically by our init function. Therefore, the user should
only connect the OV7670 camera module to the STM32F4 board as tabulated in
Table 14.4.

14.4 Digital Camera Interface Module in the STM32F4
Microcontroller

The digital camera interface (DCMI) module in the STM32F4 microcontroller is a
peripheral unit which connects the microcontroller to camera modules through its
8-, 10-, 12-, or 14-bit parallel data bus. This way, the DCMI module can receive
image data from the camera and send it to a given RAM address through DMA
module. The DCMI module can also crop the acquired image. Hence, this operation
can be done while acquiring the image.

14.4.1 Working Principles of the DCMIModule

We can explain working principles of the DCMI module based on the definitions in
Sect. 8.1 as follows. The DCMI module data can be one of 8, 10, 12, or 14 bits in
parallel form. Data format here can be either monochrome or raw Bayer, YCbCr422,
RGB565, or compressed jpeg form. The DCMI module uses NRZ data encoding.
Voltage levels in operation may change based on the microcontroller and camera
module used. Data transfer from the camera to microcontroller is in simplex mode.
We can assume that there is a master slave setup in the DCMI module. The reason
for this is as follows. The camera initializes the communication. It also generates all
data, pixel clock (PIXCLK), and synchronization signals (VSYNC and HSYNC).
Hence, the camera module acts as the master device. The microcontroller acts as the
slave device. Baud rate for the DCMI module can reach up to 54 MB/s. Rising or
falling edge of PIXCLK provides timing of the data to be read from the camera. The
DCMI module triggers an interrupt for the following cases: when a new line starts,
when a new frame starts, when the frame is grabbed completely, or when an error
occurs.

We provide connection diagram between the DCMI and camera module in
Fig. 14.6. As can be seen in this figure, there are n+1 data pins in which n can
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Fig. 14.6 Connection
diagram between the DCMI
and camera modules

Fig. 14.7 Block diagram of the DCMI module in the STM32F4 microcontroller

be 7, 9, 11, or 13. There are two synchronization pins and one clock pin. All signal
directions are from the camera to the DCMI module.

We provide block diagram of the DCMI module in the STM32F4 microcontroller
in Fig. 14.7. As can be seen in this figure, there are four main blocks as synchronizer,
data extractor, FIFO and data formatter, and register. The synchronizer block
captures edges of the clock and synchronization signals to control the data extractor
and FIFO blocks. The data extractor block receives data from the pins and transfers
it to the FIFO and data formatter block. Data is stored there. Then, it is transferred to
a 32-bit data register. Data is transferred to the DMA module afterward. The register
block consists of registers to control all mentioned blocks.
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The DCMI module can run in either continuous or snapshot mode. In continuous
mode, the module acquires images in a continuous manner. In snapshot mode, the
module acquires one image and then stops its operation.

The DCMI module has 17 pins of which 3 of them are for synchronization and
14 of them are for data transfer. We provide connection of these pins to GPIO
ports in Table 14.4. In this table, we listed the ports which are available via camera
connector. There may be other pin configurations here as well. Please see the related
references for this purpose [2].

14.4.2 Setting Up the DCMIModule

We should set up the DCMI module before using it. Therefore, we will consider this
operation next.

14.4.2.1 Setup via C Language
We will benefit from STM32CubeMX to set up the DCMI module in C language.
At this stage, we assume that a project has already been created in STM32CubeIDE
as explained in Sect. 3.1.3. First, we should connect the OV7670 camera module
pins to the DCMI module. To do so, we should select the mentioned pins and set
their property with respect to the associated DCMI function as in Table 14.4. We
should also physically connect the camera module pins to the STM32F4 board via
this information.

Next, we should set up the DCMI module. To do so, open the left menu on
STM32CubeMX, and select the DCMI mode as “Slave 8 bit external Synchro”
in the Multimedia - DCMI menu. The following settings should be done in the
“DCMI Mode and Configuration” window “Parameter Settings” tab. Set “Pixel
clock polarity” to “Active on Rising Edge,” “Vertical synchronization polarity” to
“Active High,” “Horizontal synchronization polarity” to “Active Low,” “Frequency
of frame capture” to “All frames are captured,” and “JPEG mode” to “Disabled.”
The reader should press “Add” in the “DMA Settings” tab. Then, the “DMA request
to the added line” should be set as “DCMI.” Afterward, the line should be pressed,
and the “DMA mode” should be set as “Circular” in the opening area. In the “DMA
Settings” tab, “DCMI global interrupt” should be enabled in the NVIC settings.

14.4.2.2 Setup via C++ Language
The camera library introduced in Sect. 14.3.4 handles all adjustments in C++
language. Therefore, we do not need any extra setup here. However, we should
physically connect the OV7670 camera module to the STM32F4 board as tabulated
by Table 14.4.

14.4.2.3 Setup via MicroPython
The ov7670 module introduced in Sect. 14.3.4 handles all adjustments in MicroPy-
thon. Therefore, we do not need any extra setup here. However, we should physically
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connect the OV7670 camera module to the STM32F4 board as tabulated by
Table 14.4.

14.5 Image Acquisition via Digital Camera

Acquiring an image via digital camera is straightforward once the DCMI and camera
modules are configured and initialized. To be more specific, the DCMI module
handles the rest of the image acquisition operation as it is initialized. We explore
how this is done next. Then, we show how the acquired image can be displayed on
LCD of the STM32F4 board. Afterward, we explore how the acquired image can be
transferred to PC. Finally, we focus on format conversions applied to the acquired
image.

14.5.1 Acquiring the Image

The DCMI module acquires image from the digital camera in pixel basis. Each pixel
can be represented by one or more bytes based on the image format. Therefore, we
should handle the acquisition operation accordingly. Next, we provide methods in
C, C++, and MicroPython languages for this purpose.

14.5.1.1 Image Acquisition via C Language
We have four functions in our camera library in C language for image
acquisition as follows. The function OV7670_captureSnapShot acquires one
image from the camera in the image structure ImageTypeDef. The function
OV7670_startContinuous performs the image acquisition operation in a
continuous manner. Each acquired image is stored in the struct ImageTypeDef.
The function OV7670_stopContinuous stops the continuous image acquisition
operation. The function OV7670_pollForCapture adds a timeout value for the
image acquisition operation. This function can be used to eliminate the infinite loop
if the acquisition operation becomes unsuccessful in a given timeout value. We will
show usage of these functions in Sects. 14.5.2 and 14.5.3 with display on LCD
and data transfer to PC, respectively. We next provide detailed explanation of the
mentioned functions.

void OV7670_captureSnapShot(ImageTypeDef *Pimg);
/*
Pimg: pointer to the ImageTypeDef struct
*/

void OV7670_startContinuous(ImageTypeDef *Pimg);

void OV7670_stopContinuous(void);

void OV7670_pollForCapture(uint32_t timeout);
/*
timeout: timeout duration
*/
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14.5.1.2 Image Acquisition via C++ Language
We can benefit from our camera library to acquire images in C++ language.
The functions in this library share the same name as their C counterpart. These
functions are as follows. The function captureSnapShot acquires one image from
the camera and stores it in the object created by the IMAGE class. The function
startContinuous acquires images continuously from the camera and stores them
in the object created by the IMAGE class. The function stopContinuous stops con-
tinuous image acquisition operation. The function pollForCapture adds a timeout
value for the image acquisition operation. This function can be used to eliminate the
infinite loop if the acquisition operation becomes unsuccessful in a given timeout
value. To note here, these four functions belong to the OV7670 class. Hence, they
should be used accordingly such as OV7670.captureSnapShot(&img). We will
show usage of these functions in Sects. 14.5.2 and 14.5.3 with display on LCD
and data transfer to PC, respectively. We next provide detailed information on the
mentioned functions.

void captureSnapShot(IMAGE *Pimg);
/*
Pimg: pointer to the IMAGE object
*/

void startContinuous(IMAGE *Pimg);

void stopContinuous(void);

void pollForCapture(uint32_t timeout);
/*
timeout: timeout duration
*/

14.5.1.3 Image Acquisition via MicroPython
The functions in our ov7670 module share the same name as their C counterpart.
These functions are as follows. The function captureSnapShot acquires one image
from the camera and stores it in the image object. The function startContinuous
acquires images continuously from the camera and stores it in the image object.
The function stopContinuous stops the continuous image acquisition operation.
The function pollForCapture adds a timeout value for the image acquisition
operation. This function can be used to eliminate the infinite loop if the acquisition
operation becomes unsuccessful in a given timeout value. To note here, these four
functions belong to the ov7670 module. Hence, they should be used accordingly
such as ov7670.captureSnapShot(img) where img is the created image object.
We will show usage of these functions in Sects. 14.5.2 and 14.5.3 with display on
LCD and data transfer to PC, respectively. We next provide detailed information on
the mentioned functions.

captureSnapShot(img);
/*
img: created image object based on image_obj_t struct
*/
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startContinuous(img);

stopContinuous();

pollForCapture(timeout);
/*
timeout: timeout duration in milliseconds
*/

14.5.2 Displaying the Acquired Image on LCD

As we acquire an image from the OV7670 camera module, we can display it on
LCD of the STM32F4 board. We will benefit from the available functions in our
camera and LCD libraries for this purpose. As a side note, the LCD library has been
introduced in Chap. 11. We next provide sample codes in C, C++, and MicroPython
languages for this purpose.

14.5.2.1 Display via C Language
We provide the C code to display an acquired image from the OV7670 camera
module on LCD of the STM32F4 board in Listing 14.6. In this code, we first
form the struct imageTypeDef struct. Then, it is initialized by the function
IMAGE_init. Afterward, LCD and camera modules are initialized. Then, the
camera runs in continuous mode, and acquired images are displayed on the LCD
in an infinite loop.

Listing 14.6 Displaying the acquired image from the camera on the LCD of the STM32F4 board,
the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "ov7670.h"
#include "ili9341.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
OV7670_init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
ILI9341_init(SCREEN_HORIZONTAL);

OV7670_startContinuous(&img);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
OV7670_pollForCapture(1000);
ILI9341_drawImage(&img, 0, 0);
/* USER CODE END WHILE */
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/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

To execute the C code in Listing 14.6, we should create a project first. Then,
we should set the OV7670 camera, DCMI, and LCD modules as explained in
Sects. 14.3.4, 14.4, and Chap. 11. Please note that the LCD will be set up to be used
by SPI. As we debug and run the code, images with the QVGA RGB565 format will
be acquired from the camera and displayed on the LCD continuously.

14.5.2.2 Display via C++ Language
We next provide an example to display the acquired image from the OV7670 camera
module on the LCD of the STM32F4 board. This example is the same as its C
version introduced in the previous section. We provide the C++ code for the example
in Listing 14.7.

Listing 14.7 Displaying the acquired image from the camera on LCD of the STM32F4 board, the
C++ code

#include "mbed.h"

#include "image.hpp"
#include "ov7670.hpp"
#include "ili9341.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
OV7670 ov7670(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
ILI9341 ili9341(SCREEN_HORIZONTAL);

int main()
{
ov7670.startContinuous(&img);
while (true)
{
ov7670.pollForCapture(1000);
ili9341.drawImage(&img, 0, 0);
}
}

To execute the C++ code in Listing 14.7, we should create a new project first.
Here, we do not need to make any adjustments. The camera library handles all these
operations for us. However, we should set the OV7670 camera, DCMI, and LCD
modules as explained in Sects. 14.3.4, 14.4, and Chap. 11. Please note that the LCD
will be set up to be used by SPI. As we debug and run the code, images with the
QVGA RGB565 format will be acquired from the camera and displayed on the LCD
continuously.

14.5.2.3 Display via MicroPython
In this example, we display the acquired image from the OV7670 camera module
on the LCD of the STM32F4 board as its C version. We provide the MicroPython
code for the example in Listing 14.8. As we run the code, images with the QVGA
RGB565 format will be acquired from the camera and displayed on the LCD
continuously.



14.5 Image Acquisition via Digital Camera 535

Listing 14.8 Displaying the acquired image from the camera on LCD of the STM32F4 board, the
MicroPython code

import image
import lcdSPI
import ov7670

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)
lcdSPI.init(0)
ov7670.reset()
ov7670.init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)
ov7670.startContinuous(img)
while True:

ov7670.pollForCapture(1000)
lcdSPI.drawImage(img, 0, 0)

main()

14.5.3 Transferring the Acquired Image to PC

As we acquire an image from the camera, we can transfer it to PC for further
processing. We will benefit from the available functions in our camera and image
transfer libraries for this purpose. Next, we will provide ways of using this in C,
C++, and MicroPython languages.

14.5.3.1 Image Transfer via C Language
We provide a sample code in Listing 14.9 to acquire an image from the OV7670
camera module and transfer it to PC. To run the code, we should form a project
first. Then, we should set the UART module as explained in Sect. 8.2. Like-
wise, we should set the OV7670 camera and DCMI modules as explained in
Sects. 14.3.4 and 14.4. We should also set the user button on the STM32F4 board as
explained in Chap. 4.

Listing 14.9 Transferring the acquired image to PC, the C code

/* USER CODE BEGIN Includes */
#include "ov7670.h"
#include "image.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
OV7670_init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
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{
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET)
{
OV7670_captureSnapShot(&img);
OV7670_pollForCapture(1000);
SERIAL_imageSend(&img);
}
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

As the user button on the STM32F4 board is pressed, the OV7670 camera
module starts working in snapshot mode and acquires one image. Then, this image
is transferred to PC as explained in Sect. 14.2. On the PC side, all necessary settings
should have been done beforehand, and the code in Listing 14.2 should have been
running. The acquired image will be saved to the “capture” folder in PC.

14.5.3.2 Image Transfer via C++ Language
We next provide a sample code in C++ language to acquire an image from the
OV7670 camera module and transfer it to PC. This example is the same as
its C version introduced in the previous section. We provide the C++ code in
Listing 14.10.

Listing 14.10 Transferring the acquired image to PC, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "ov7670.hpp"
#include "serialImage.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
OV7670 ov7670(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565);
SERIALIMAGE serialImage;
DigitalIn userButton(BUTTON1);

int main()
{
while (true)
{
if (userButton)
{
ov7670.captureSnapShot(&img);
ov7670.pollForCapture(1000);
serialImage.send(&img);
}
}
}

To execute the code, we should create a new project. Here, we do not need to
make any adjustments. The camera and image transfer libraries handle all these
operations for us. As we debug and run the code, it waits for user response. As the
user button on the STM32F4 board is pressed, the OV7670 camera module starts
working in snapshot mode and acquires one image. Then, this image is transferred
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to PC as explained in Sect. 14.2. On the PC side, all necessary settings should have
been done beforehand, and the code in Listing 14.2 should have been running. The
acquired image will be saved to the “capture” folder there.

There is one important issue here. Mbed Studio opens the serial terminal while
debugging the code. If the Python code in Listing 14.2 has not been executed on PC
before the debug operation, Python gives error indicating that the port is in use. To
avoid this error, either the user should run the image transfer code in Listing 14.2
beforehand or the terminal window there should be closed after debugging the code
in Mbed Studio.

14.5.3.3 Image Transfer via MicroPython
We next provide a sample code in MicroPython to acquire an image from the
OV7670 camera module and transfer it to PC as its C version. We provide the
MicroPython code in Listing 14.11.

Listing 14.11 Transferring the acquired image to PC, the MicroPython code

import image
import serialImage
import ov7670
import pyb

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)
ov7670.reset()
ov7670.init(IMAGE_RES_QVGA , IMAGE_FORMAT_RGB565)
serialImage.init()
userButton = pyb.Pin(’PA0’, mode=pyb.Pin.IN, pull=pyb.Pin.

PULL_DOWN)
while True:

if userButton.value() == 1:
ov7670.captureSnapShot(img)
ov7670.pollForCapture(1000)
serialImage.send(img)

main()

As we execute the code, it waits for the user response. As the user button on the
STM32F4 board is pressed, the OV7670 camera module starts working in snapshot
mode and acquires one image. Then, this image is transferred to PC as explained in
Sect. 14.2. On the PC side, all necessary settings should have been done beforehand,
and the code in Listing 14.2 should have been running. The acquired image will be
saved to the “capture” folder there.

14.5.4 Format Conversions

As mentioned in Sect. 14.1.3, we can acquire images from the digital camera in dif-
ferent color formats. Besides, the LCD on the STM32F4 board has limited options to
display images. Therefore, we will consider these formats and conversions between
them in this section. To be more specific, we will consider the YUV/YCbCr422 and
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RGB565 color formats for the OV7670 camera module. We will only consider the
RGB565 color format for the LCD on the STM32F4 board.

In the RGB565 pixel format, one pixel is represented with 16 bits, distributed
as 5 bits for red, 6 bits for green, and 5 bits for blue value. The YUV/YCbCr422
color format consists of luminance and two chrominance components as blue and
red projections. In this format, two pixels are compressed into four bytes. The Cb/U
and Cr/V components are shared between two consecutive pixels.

Since the camera feeds the YUV/YCbCr422 and RGB565 color formats, we did
not consider conversion methods between them. Instead, we provided the RGB565
to grayscale and YUV/YCbCr422 to grayscale conversion. As mentioned before,
the LCD displays color images in RGB565 format. Hence, we should represent the
grayscale image as if it is in RGB565 format to show it on the LCD.

In order to convert an RGB565 color image to grayscale form, we can use
the formula Y = (uint8_t)((77 * R + 150 * G + 29 * B) » 8). This is
an approximation to the actual conversion Y = 0.2989 * R + 0.5870 * G +
0.1140 * B. We picked the former representation since it only uses integer
numbers in operation. Hence, the conversion can be done faster. To note here, since
the RGB565 color format has limited red, green, and blue values, the corresponding
grayscale representation will also be limited in terms of levels. Instead, we can
acquire the color image in YUV/YCbCr422 format from the camera. Then, we can
use the Y component as the grayscale representation. This way, we do not perform
any mathematical operations in obtaining the grayscale image. The implicit formula
used here is Y = 0.59*G + 0.31*R + 0.11*B which is almost the same as the
one we used. The advantage of this method is that the camera acquires the red, green,
and blue values in eight bits within itself. As a result, we can acquire grayscale
values between 0 and 255.

We can represent a grayscale image in RGB565 color format to display it on
LCD. To do so, we should perform two operations as RGB565_H = (Y & 0xF8)
| (Y » 5) and RGB565_L = (Y & 0x1C) « 3) | (Y » 3) where Y stands for
the grayscale image. Here, RGB565_H and RGB565_L represent the most and least
significant eight bits of the RGB565 color data, respectively.

14.5.4.1 Format Conversion in C Language
We next provide functions to perform format conversions mentioned in the previous
section in C language. These functions are available in our image processing library.
We provide detailed explanation of these functions next.

void IMAGE_RGB565toGrayscale(ImageTypeDef *Pimgsrc, ImageTypeDef
*Pimgdst);

/*
Pimgsrc: pointer to the source ImageTypeDef struct
Pimgdst: pointer to the destination ImageTypeDef struct
*/

void IMAGE_YUV422toGrayscale(ImageTypeDef *Pimgsrc, ImageTypeDef
*Pimgdst);

void IMAGE_grayscaletoRGB565(ImageTypeDef *Pimgsrc, ImageTypeDef
*Pimgdst);
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We provide a sample code, given in Listing 14.12, to show the usage of
the mentioned format conversion functions. Within the code, we first form three
images with the struct imageTypeDef. Then, we initialize them by the function
IMAGE_init. Afterward, we initialize the OV7670 camera module. Then, we first
obtain the color image in YUV422 format, convert it to grayscale form, and send it
to PC. Next, we reset the OV7670 camera and initialize it again. Before acquiring
the image, we add a 1 s delay. Hence, the camera settings (such as auto white balance
and auto exposure) can be done. We then acquire another color image in RGB565
format, convert it to grayscale form, and send it to PC. In order to run the code, we
should make necessary settings as explained in Sect. 14.5.3.

Listing 14.12 Format conversion and data transfer to PC, the C code

/* USER CODE BEGIN Includes */
#include "ov7670.h"
#include "image.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img1;
ImageTypeDef img2;
ImageTypeDef img3;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img1, IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
IMAGE_init(&img2, IMAGE_RES_QQVGA , IMAGE_FORMAT_GRAYSCALE);
IMAGE_init(&img3, IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);

OV7670_init(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
HAL_Delay(1000);
OV7670_captureSnapShot(&img1);
OV7670_pollForCapture(1000);
IMAGE_YUV422toGrayscale(&img1, &img2); // convert YUV422 to

Grayscale
SERIAL_imageSend(&img2);

OV7670_reset();

OV7670_init(IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);
HAL_Delay(1000);
OV7670_captureSnapShot(&img3);
OV7670_pollForCapture(1000);
IMAGE_RGB565toGrayscale(&img3, &img2); // convert RGB565 to

Grayscale
SERIAL_imageSend(&img2);
/* USER CODE END 2 */

We provide another example on color image format conversion with the C code
given in Listing 14.13. As in the first example, we first form three images with
the struct imageTypeDef. Then, we initialize them by the function IMAGE_init.
Afterward, we initialize the OV7670 camera and LCD on the STM32F4 board. We
set the camera to work in continuous mode. Therefore, we acquire color images in
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YUV/YCbCr422 form in an infinite loop and convert them to grayscale form. Then,
we display the acquired images on LCD continuously. In order to run the code, we
should make necessary settings as explained in Sect. 14.5.3.

Listing 14.13 Format conversion and image display on LCD, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "ov7670.h"
#include "ili9341.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img3;
ImageTypeDef img1;
ImageTypeDef img2;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img1, IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
IMAGE_init(&img2, IMAGE_RES_QQVGA , IMAGE_FORMAT_GRAYSCALE);
IMAGE_init(&img3, IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);

ILI9341_init(SCREEN_HORIZONTAL);
OV7670_init(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
OV7670_startContinuous(&img1);
/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
OV7670_pollForCapture(1000);
IMAGE_YUV422toGrayscale(&img1, &img2); // convert YUV422 to

Grayscale
IMAGE_grayscaletoRGB565(&img2, &img3); // convert Grayscale to

RGB565
ILI9341_drawImage(&img3, 0, 0);
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

14.5.4.2 Format Conversion in C++ Language
We next provide functions to perform format conversions mentioned in the previous
section in C++ language. These functions are available in our image processing
library. We provide the detailed explanation of these functions next.

void IMAGE_RGB565toGrayscale(IMAGE Pimgsrc, IMAGE Pimgdst);
/*
Pimgsrc: pointer to the source IMAGE object
Pimgdst: pointer to the destination IMAGE object
*/

void IMAGE_YUV422toGrayscale(IMAGE Pimgsrc, IMAGE Pimgdst);

void IMAGE_grayscaletoRGB565(IMAGE Pimgsrc, IMAGE Pimgdst);
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We provide a sample C++ code, given in Listing 14.14, on format conversion.
This example is the same as in its C version introduced in the previous section. We
should first open a new project to execute the code. We should make necessary
settings as explained in Sect. 14.5.3. As we debug and run the code, two color
images will be acquired in QQVGA YUV/YCbCr422 and RGB565 color formats.
These are converted to grayscale form separately. Then, they are transferred to PC.
On the PC side, all necessary settings should have been done beforehand, and the
code in Listing 14.2 should have been running. The converted images will be saved
to the “capture” folder in PC.

Listing 14.14 Format conversion and data transfer to PC, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "ov7670.hpp"
#include "serialImage.hpp"

IMAGE img1(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
IMAGE img2(IMAGE_RES_QQVGA , IMAGE_FORMAT_GRAYSCALE);
IMAGE img3(IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);

OV7670 ov7670;
SERIALIMAGE serialImage;

int main()
{
ov7670.init(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
thread_sleep_for(1000);
ov7670.captureSnapShot(&img1);
ov7670.pollForCapture(1000);
IMAGE_YUV422toGrayscale(&img1, &img2);
serialImage.send(&img2);

ov7670.reset();

ov7670.init(IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);
thread_sleep_for(1000);
ov7670.captureSnapShot(&img3);
ov7670.pollForCapture(1000);
IMAGE_RGB565toGrayscale(&img3, &img2);
serialImage.send(&img2);

while (true);
}

We provide a second example in C++ language in Listing 14.15. This code
performs the same operations as its C version in Listing 14.13. In the code, we
form three images via the IMAGE class. Afterward, we initialize the OV7670 camera
and LCD on the STM32F4 board. We set the camera to work in continuous mode.
Therefore, we acquire color images in YUV/YCbCr422 format in an infinite loop,
convert them to grayscale form, and display them on LCD continuously. We should
first create a new project to execute the code. We should make necessary settings as
explained in Sect. 14.5.3.
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Listing 14.15 Format conversion and image display on LCD, the C++ code

#include "mbed.h"

#include "ili9341.hpp"
#include "image.hpp"
#include "ov7670.hpp"

IMAGE img1(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
IMAGE img2(IMAGE_RES_QQVGA , IMAGE_FORMAT_GRAYSCALE);
IMAGE img3(IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565);

OV7670 ov7670(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422);
ILI9341 ili9341(SCREEN_HORIZONTAL);

int main()
{
ov7670.startContinuous(&img1);

while (true)
{
ov7670.pollForCapture(1000);
IMAGE_YUV422toGrayscale(&img1, &img2);
IMAGE_grayscaletoRGB565(&img2, &img3);
ili9341.drawImage(&img3, 0, 0);
}
}

14.5.4.3 Format Conversion in MicroPython
We have functions in our image module to perform format conversions in MicroPy-
thon. We provide the detailed explanation of these functions next.

IMAGE_RGB565toGrayscale(imgsrc, imgdst);
/*
imgsrc: created source image object based on image_obj_t struct
imgdst: created destination image object based on image_obj_t

struct
*/

IMAGE_YUV422toGrayscale(imgsrc, imgdst);

IMAGE_grayscaletoRGB565(imgsrc, imgdst);

We provide a sample MicroPython code, given in Listing 14.16, on format
conversion. This example is the same as its C version. As we run the code, two color
images will be acquired in QQVGA YUV/YCbCr422 and RGB565 color formats.
These are converted to grayscale form separately. Then, they are transferred to PC.
On the PC side, all necessary settings should have been done beforehand, and the
code in Listing 14.2 should have been running. The converted images will be saved
to the “capture” folder in PC.

Listing 14.16 Format conversion and data transfer to PC, the MicroPython code

import image
import serialImage
import ov7670
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def main():
img1 = image.init(0, 0, IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422)
img2 = image.init(0, 0, IMAGE_RES_QQVGA ,

IMAGE_FORMAT_GRAYSCALE)
img3 = image.init(0, 0, IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565)
serialImage.init()
ov7670.reset()
ov7670.init(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422)
ov7670.captureSnapShot(img1)
ov7670.pollForCapture(1000)
image.IMAGE_YUV422toGrayscale(img1, img2)
serialImage.send(img2)

ov7670.reset()
ov7670.init(IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565)
ov7670.captureSnapShot(Qimg3)
ov7670.pollForCapture(1000)
image.IMAGE_RGB565toGrayscale(img3, img2)
serialImage.send(img2)

main()

We provide the second example in MicroPython in Listing 14.17. This code
performs the same operations as its C version in Listing 14.13. In the code, we
form three images via image module. Afterward, we initialize the OV7670 camera
and LCD on the STM32F4 board. We set the camera to work in continuous mode.
Therefore, we acquire color images in YUV/YCbCr422 format in an infinite loop,
convert them to grayscale form, and display them on the LCD continuously.

Listing 14.17 Format conversion and image display on LCD, the MicroPython code

import image
import lcdSPI
import ov7670

def main():
img1 = image.init(0, 0, IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422)
img2 = image.init(0, 0, IMAGE_RES_QQVGA ,

IMAGE_FORMAT_GRAYSCALE)
img3 = image.init(0, 0, IMAGE_RES_QQVGA , IMAGE_FORMAT_RGB565)

lcdSPI.init(0)
ov7670.reset()
ov7670.init(IMAGE_RES_QQVGA , IMAGE_FORMAT_YUV422)
ov7670.startContinuous(img1)
while True:

ov7670.pollForCapture(1000)
image.IMAGE_YUV422toGrayscale(img1, img2)
image.IMAGE_grayscaletoRGB565(img2, img3)
lcdSPI.drawImage(img3, 0, 0)

main()
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14.6 Pixel-Based Digital Image Processing Operations

Acquiring an image from the digital camera and displaying it on LCD can be taken
as the first phase of digital image processing. The second phase is processing the
acquired image based on given requirements. The simplest method to process an
image is applying pixel-based operations on it. The idea here is altering the pixel
value by a transformation. To do so, we will start with obtaining negative of the
image. Then, we will apply intensity transformations to the image. Finally, we will
consider thresholding the image.

14.6.1 Obtaining the Negative Image

We can obtain negative of a grayscale image by subtracting each pixel value from
255 (assuming it to be an eight-bit image). To do so, we formed functions in C, C++,
and MicroPython languages. We explore them next.

14.6.1.1 C Language
We formed the function IMAGE_grayscaleNegative to take the negative of a
given grayscale image in C language. This function is available in our image
processing library. Details of this function are given next.

void IMAGE_grayscaleNegative(ImageTypeDef *Pimgsrc, ImageTypeDef
*Pimgdst);

/*
Pimgsrc: pointer to the source ImageTypeDef struct
Pimgdst: pointer to the destination ImageTypeDef struct
*/

We provide a sample code in Listing 14.18 on the usage of the function
IMAGE_grayscaleNegative. This code works in the same manner as explained
in Sect. 14.2 without using the LCD. To check how the code works, we can feed the
Mandrill image from PC. As the code is run, we obtain the negated image. It is sent
back to PC within the code. As a result, we should have our processed image as in
Fig. 14.8.

Listing 14.18 Obtaining the negative image, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);

SERIAL_imageCapture(&img);
IMAGE_grayscaleNegative(&img, &img);
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Fig. 14.8 Negated grayscale
Mandrill image

SERIAL_imageSend(&img);
/* USER CODE END 2 */

In order to run the code, we should set the UART mode only as explained in
Sect. 14.2. We should also add the image processing and transfer libraries to our
project by adding the files “serialImage.c” and “image.c” to the folder “project-
>Core->Src” and “serialImage.h” and “image.h” to the folder “project->Core->Inc.”

14.6.1.2 C++ Language
We can also obtain negative of a grayscale image in C++ language. To do so, we can
use the function IMAGE_grayscaleNegative available in our image processing
library. Details of this function are given next.

void IMAGE_grayscaleNegative(IMAGE *Pimgsrc, IMAGE *Pimgdst);
/*
Pimgsrc: pointer to the source IMAGE object
Pimgdst: pointer to the destination IMAGE object
*/

We provide a sample code in Listing 14.19 to show working principles of the
function IMAGE_grayscaleNegative. In order to execute this code, the reader
should follow the steps given in Sect. 14.2 without adding the LCD. To check how
the code works, we can feed the Mandrill image from PC. As the code is run, the
processed image is turned back to PC. As a result, we should have the processed
image as in Fig. 14.8.

Listing 14.19 Obtaining the negative image, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "serialImage.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);
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SERIALIMAGE serialImage;

int main()
{
serialImage.capture(&img);
IMAGE_grayscaleNegative(&img, &img);
serialImage.send(&img);

while (true);
}

In order to run the code, we do not need any adjustments. The C++ image
processing and transfer libraries handle all settings for us. We should only include
them by adding the files “serialImage.cpp,” “serialImage.hpp,” “image.cpp,” and
“image.hpp” to the active project folder.

14.6.1.3 MicroPython
We can also obtain negative of a grayscale image in MicroPython. To do so, we
can use the function IMAGE_grayscaleNegative available in our image module.
Details of this function are given next.

IMAGE_grayscaleNegative(imgsrc, imgdst);
/*
imgsrc: created source image object based on image_obj_t struct
imgdst: created destination image object based on image_obj_t

struct
*/

We provide a sample code in Listing 14.20 to show working principles of the
function IMAGE_grayscaleNegative. In order to execute this code, the reader
should follow the steps given in Sect. 14.2 without adding the LCD. To check how
the code works, we can feed the Mandrill image from PC. As the code is run, the
processed image is turned back to PC. As a result, we should have the processed
image as in Fig. 14.8.

Listing 14.20 Obtaining the negative image, the MicroPython code

import image
import serialImage

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE

)
serialImage.init()
serialImage.capture(img)
image.IMAGE_grayscaleNegative(img, img)
serialImage.send(img)

main()
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14.6.2 Intensity Transformation Applied to the Image

Intensity transformation is generally used to increase or decrease brightness of an
image. One way of doing this is by obtaining power of a pixel value. Therefore,
this specific operation is also called power transformation. As we apply the
transformation, we should normalize the transformed image to the range 0 and
255. Next, we provide functions to perform power transformations in C, C++, and
MicroPython languages.

14.6.2.1 C Language
We formed the function IMAGE_grayscalePowerTransform to obtain the power
transformation of a given image in C language. This function is available in our
image processing library. Details of the function are given next.

void IMAGE_grayscalePowerTransform(ImageTypeDef *Pimgsrc,
ImageTypeDef *Pimgdst, float_t pw);

/*
Pimgsrc: pointer to the source ImageTypeDef struct
Pimgdst: pointer to the destination ImageTypeDef struct
pw: power exponent
*/

The function IMAGE_grayscalePowerTransform gets the source image, takes
the power of each pixel by the pw value, and returns the transformed image. The
power function works slow in C language. Therefore, we initially formed a lookup
table and used it in obtaining the power transformation in our function.

We provide a sample code in Listing 14.21 on the usage of the function
IMAGE_grayscalePowerTransform. This code works in the same manner as
explained in Sect. 14.6.1.1. In order to execute the code, we should feed the Mandrill
image from PC. As the code is run, we obtain the power transformed image turned
back to PC. The result should be as in Fig. 14.9.

Listing 14.21 Obtaining power transformation of the image, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);

SERIAL_imageCapture(&img);
IMAGE_grayscalePowerTransform(&img, &img, 0.5);
SERIAL_imageSend(&img);
/* USER CODE END 2 */
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Fig. 14.9 Power
transformation applied to the
grayscale Mandrill image

14.6.2.2 C++ Language
We can also obtain power transform of a grayscale image in C++ language. To
do so, we formed the function IMAGE_grayscalePowerTransform in our image
processing library. Details of this function are given next.

void IMAGE_grayscalePowerTransform(IMAGE *Pimgsrc, IMAGE *Pimgdst
, float_t pw);

/*
Pimgsrc: pointer to the source IMAGE object
Pimgdst: pointer to the destination IMAGE object
pw: power exponent
*/

The function IMAGE_grayscalePowerTransform works similar to its C coun-
terpart. We provide a sample code in Listing 14.22 to show how the power
transformation works. To execute this code, the reader should follow the steps given
in Sect. 14.6.1.2. To check how the code works, we can feed the Mandrill image
from PC. As the code is run, we should obtain the transformed image sent back to
PC. As a result, we should have the resultant image as in Fig. 14.9.

Listing 14.22 Obtaining power transformation of the image, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "serialImage.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);

SERIALIMAGE serialImage;

int main()
{
serialImage.capture(&img);
IMAGE_grayscalePowerTransform(&img, &img, 0.5);
serialImage.send(&img);
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while (true);
}

14.6.2.3 MicroPython
We can also obtain the power transform of a grayscale image in MicroPython. To
do so, we formed the function IMAGE_grayscalePowerTransform in our image
processing library. Details of this function are given next.

IMAGE_grayscalePowerTransform(imgsrc, imgdst, pw);
/*
imgsrc: created source image object based on image_obj_t struct
imgdst: created destination image object based on image_obj_t

struct
pw: power exponent
*/

The function IMAGE_grayscalePowerTransform works similar to its C coun-
terpart. We provide a sample code in Listing 14.23 to show how the power
transformation works. To execute this code, the reader should follow the steps given
in Sect. 14.6.1.3. To check how the code works, we can feed the Mandrill image
from PC. As the code is run, we should obtain the transformed image sent back to
PC. As a result, we should have the image as in Fig. 14.9.

Listing 14.23 Obtaining power transformation of the image, the MicroPython code

import image
import serialImage

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE

)
serialImage.init()
serialImage.capture(img)
image.IMAGE_grayscalePowerTransform(img, img, 0.5)
serialImage.send(img)

main()

14.6.3 Thresholding the Image

Thresholding corresponds to transforming a grayscale image to binary form. This
operation may be used to emphasize an object of interest in the image. Next, we
provide functions to threshold a given grayscale image in C, C++, and MicroPython
languages.

14.6.3.1 C Language
We formed the function IMAGE_grayscaleThreshold to threshold a given
grayscale image in C language. This function is available in our image processing
library. Details of this function are given next.
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Fig. 14.10 Thresholding
applied to the grayscale
Mandrill image

void IMAGE_grayscaleThreshold(ImageTypeDef *Pimgsrc,
ImageTypeDef *Pimgdst, uint8_t threshold);

/*
Pimgsrc: pointer to the source ImageTypeDef struct
Pimgdst: pointer to the destination ImageTypeDef struct
threshold: threshold level
*/

The function IMAGE_grayscaleThreshold takes the source image, thresholds
it, and returns the thresholded image. Here, the thresholded image is represented by
two values as 0 (black) and 255 (white).

We provide a sample code in Listing 14.24 on the usage of the function
IMAGE_grayscaleThreshold. This code works in the same manner as explained
in Sect. 14.6.1.1. In order to execute the code, we can provide the Mandrill image
from PC. As the code is run, it turns back the thresholded image to PC. We should
obtain the thresholded image as in Fig. 14.10.

Listing 14.24 Obtaining the thresholded image, the C code

/* USER CODE BEGIN Includes */
#include "image.h"
#include "serialImage.h"
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
ImageTypeDef img;
/* USER CODE END PV */

/* USER CODE BEGIN 2 */
IMAGE_init(&img, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);

SERIAL_imageCapture(&img);
IMAGE_grayscaleThreshold(&img, &img, 128);
SERIAL_imageSend(&img);
/* USER CODE END 2 */
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14.6.3.2 C++ Language
We can also obtain thresholded version of a grayscale image in C++ language. To do
so, we formed the function IMAGE_grayscaleThreshold in our image processing
library. Details of this function are given next.

void IMAGE_grayscaleThreshold(IMAGE *Pimgsrc, IMAGE *Pimgdst,
uint8_t threshold);

/*
Pimgsrc: pointer to the source IMAGE object
Pimgdst: pointer to the destination IMAGE object
threshold: threshold level
*/

The function IMAGE_grayscaleThreshold works similar to its C counterpart.
We provide a sample code in Listing 14.25. To execute this code, the reader should
follow the steps given in Sect. 14.6.1.2. To check how the code works, we can feed
the Mandrill image from PC. As the code is run, we should have the resultant image
as in Fig. 14.10.

Listing 14.25 Obtaining the thresholded image, the C++ code

#include "mbed.h"

#include "image.hpp"
#include "serialImage.hpp"

IMAGE img(IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE);

SERIALIMAGE serialImage;

int main()
{
serialImage.capture(&img);
IMAGE_grayscaleThreshold(&img, &img, 128);
serialImage.send(&img);

while (true);
}

14.6.3.3 MicroPython
We can also obtain thresholded version of a grayscale image in MicroPython. To do
so, we formed the function IMAGE_grayscaleThreshold in our image processing
library. Details of this function are given next.

IMAGE_grayscaleThreshold(imgsrc, imgdst, threshold);
/*
imgsrc: created source image object based on image_obj_t struct
imgdst: created destination image object based on image_obj_t

struct
threshold: threshold level
*/

The function IMAGE_grayscaleThreshold works similar to its C counterpart.
We provide a sample code in Listing 14.26. To execute this code, the reader should
follow the steps given in Sect. 14.6.1.3. To check how the code works, we can feed
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the Mandrill image from PC. As the code is run, we should have the resultant image
as in Fig. 14.10.

Listing 14.26 Obtaining the thresholded image, the MicroPython code

import image
import serialImage

def main():
img = image.init(0, 0, IMAGE_RES_QVGA , IMAGE_FORMAT_GRAYSCALE

)
serialImage.init()
serialImage.capture(img)
image.IMAGE_grayscaleThreshold(img, img, 128)
serialImage.send(img)

main()

14.7 Summary of the Chapter

Embedded digital image processing systems are becoming popular in our daily life.
Besides, digital image processing methods are used in the related computer vision
and machine learning systems (especially deep learning-based ones). In other words,
an embedded computer vision or machine learning system requires implementing
digital image processing methods. These observations led us to add a chapter on this
topic to the book. Therefore, we started with the fundamental definitions in digital
image representation on Arm® Cortex™-M microcontrollers. Then, we explained
image transfer between the PC and STM32F4 microcontroller. We next focused on
digital cameras and their usage. Then, we considered the digital camera interface
module available in the STM32F4 microcontroller. In the final part of the chapter,
we introduced pixel-based digital image processing methods. As in the previous
chapters on digital signal processing and digital control, the reader should take this
chapter as a brief introduction to this important topic. Therefore, we suggest the
reader to consult more advanced books on digital image processing to grasp this
important topic better.

Problems

14.1. Transfer an image of your choice from PC to the STM32F4 microcontroller.
Display the transferred image on the LCD of the STM32F4 board. Form the project
using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython
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14.2. Summarize working principles of a digital camera starting from optics to
feeding image data to output.

14.3. What should we understand from the image sensor?

14.4. Why is the preprocessing step needed in digital camera working steps?

14.5. How is the camera interface module used in operation?

14.6. Explain the timing and synchronization step as well as the clock signals
available in a generic digital camera.

14.7. In how many different ways image data can be represented in a digital
camera?

14.8. Summarize properties of the OV7670 camera module based on the definitions
in Sect. 14.3.1.

14.9. Explain working principles of the DCMI module in the STM32F4 microcon-
troller.

14.10. Set up the OV7670 camera and DCMI modules and take your selfie. Display
the image on the LCD of the STM32F4 board. Transfer the image to PC and display
it there via Python code. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

14.11. Form a project to apply format conversion to the image in Problem 14.10.
Hence, its grayscale version can be displayed on the LCD of the STM32F4 board.
Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

14.12. Form a project to obtain negative version of your grayscale selfie image.
Display the negated image on the LCD of the STM32F4 board. Form the project
using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython
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14.13. Form a project to apply intensity transformation to your grayscale selfie
image such that the transformed image becomes brighter. Display the transformed
image on the LCD of the STM32F4 board. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython

14.14. Form a project to threshold the grayscale version of your selfie image. Use
Otsu’s method for finding the threshold value. Display the thresholded image on the
LCD of the STM32F4 board. Form the project using:

(a) C language under STM32CubeIDE
(b) C++ language under Mbed
(c) MicroPython
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15.1 Assembly Language Programming

Although assembly language is an important topic, we postponed it till this chapter
for two main reasons. First, this book focuses more on high-level programming
languages (compared to assembly language). Second, the Arm® Cortex™-M4
instruction set is fairly complex and requires detailed treatment to handle it
appropriately. On the other hand, an embedded programmer should at least get
a feeling on assembly language programming. Therefore, we will start with the
requirements to form a complete assembly code in this section. Afterward, we will
provide a method to form an STM32CubeIDE project to execute the code. Finally,
we will consider inline assembly usage in C, C++, and MicroPython languages.

15.1.1 Forming a Complete Assembly Code

The instruction set is necessary but not sufficient to form an assembly code to be
executed on the microcontroller. The reason is as follows. The compiler (introduced
in Chap. 3) is responsible for all operations related to forming a complete binary file
to be embedded on the microcontroller flash memory when the code is written in C
or C++ language. The programmer is responsible for these tasks while forming the
code in assembly language. Assembler directives are used for this purpose. The list
of basic directives, with their brief description, to be used in this book is as follows:
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• .text assembles the following code into text (executable code) section.
• .align defines the length of instructions to be processed in terms of bytes.
• .global defines one or more global symbols.
• .end identifies end of the code.

We provide a template assembly code using the mentioned directives in List-
ing 15.1. To note here, this structure is specific to STM32CubeIDE. There may be
extra directives or a different format for other development environments. Therefore,
the reader should check them before preparing his or her assembly code in other
IDEs.

Listing 15.1 Template assembly code

.text

.align 2

.global main

main:

// Assembly Code Goes Here

END: B END
.end

Let’s consider the code in Listing 15.1. The first directive .text indicates that the
following lines correspond to assembly code. Hence, they should be placed in the
code section of the flash memory. The second directive .align defines the length
of instructions to be processed in terms of bytes. If the instructions to be executed
have 16-bit length, then we should use .align 2 as in our case. The third directive
.global defines the global variable main which indicates the starting address of
our code. Finally, the directive .end indicates the end of the assembly code.

15.1.2 Creating an Assembly Project in STM32CubeIDE

There is no direct method to create an assembly project in STM32CubeIDE.
Therefore, we should first follow the steps to form an empty C project as explained
in Sect. 3.1.3. To create the debug file (with extension “.debug”), we should debug
our (empty) C code for the first time. As the mentioned file is created, we should
delete the “main.c” file from the “Src” folder of the project. In fact, we can delete
all files with extension “.c” from the project’s “Src” folder. Then, we should add a
new file with extension “.s” to this folder. To do so, right-click on the “Src” folder,
and press “New” and “File.” In the opening window, enter the “File Name” such as
“main.s” and click “Finish.” An empty file will be created under the “Src” folder.
We can add our assembly code to this file. Here, we will use the sample code given
in Listing 15.2.
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Fig. 15.1 The “Registers”
window after executing the
first assembly code

Listing 15.2 The first assembly code for the STM32F4 microcontroller

.text

.align 2

.global main

main:

MOVS R0, #0x12
MOVS R1, #0x2
MOVS R2, #0x4
ADD R3, R0, R1

END: B END
.end

The assembly code in Listing 15.2 modifies the register content and applies the
addition operation on them. As we compile the code, we can execute it either by
the “step into” option in STM32CubeIDE or directly by the “Resume” command.
We suggest using the former option to observe all execution steps. We can observe
output of the code by inspecting the “Registers” window as in Fig. 15.1. As can be
seen in this figure, the registers have been modified according to our assembly code.

We can apply operations on the memory of the STM32F4 microcontroller by
assembly language. We provide one such example in Listing 15.3. In this code,
we modify and reach content of the memory address 0x20000020 by the LDR and
STR instructions. As we compile and run the code, we can observe its output in the
“Registers” and “Memory Browser” windows as in Fig. 15.2.

Listing 15.3 The second assembly code for the STM32F4 microcontroller

.text

.align 2

.global main

Mem_Addr=0x20000020

main:

MOVS R0, #0x09
MOVS R1, #0x11
MOVS R2, #10
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Fig. 15.2 Output of the
second assembly code. (a)
“Registers” window. (b)
“Memory Browser” window

LDR R3, =Mem_Addr
STR R2, [R3]
LDR R0, [R3]

END: B END
.end

15.1.3 Inline Assembly in C Language

Assembly language commands can also be added to the C code. This is called inline
assembly. If the user wants to execute single line of assembly code, then this can
be done by the command __asm(). The same structure can also be used to execute
more than one line of assembly code. Here, each line should be separated by the
new line command. We provide usage examples for both cases in Listing 15.4. This
code modifies the register content. Hence, the reader can observe its output from the
“Registers” window in STM32CubeIDE.

Listing 15.4 The first inline assembly usage for the STM32F4 microcontroller, the C code

int main(void)
{
// Single line of code
// __asm(" MOVS R0, #0x12");

// Multi code lines
__asm("MOVS R0, #0x12 \n"

"MOVS R1, #0x2 \n"
"MOVS R2, #0x4 \n"
"ADD R3, R0, R1");

while(1);
}

We can effectively use inline assembly and directly reach memory content in
C language. We provide one such example in Listing 15.5. Here, we store two
numbers to two successive memory locations via directly reaching memory content
in C language. Then, we add the memory content and store it to another memory
address in inline assembly. Finally, we assign this memory content to the variable
a. The reader can observe working steps of this code from the “Memory Browser”
and “Expressions” window in STM32CubeIDE.
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Listing 15.5 The second inline assembly usage for the STM32F4 microcontroller, the C code

#define memLoc1 (*(unsigned long *)0x20000020)
#define memLoc2 (*(unsigned long *)0x20000024)
#define memLoc3 (*(unsigned long *)0x20000028)

unsigned int a;

int main(void)
{
memLoc1 = 0x3;
memLoc2 = 0x4;

__asm(" LDR R7, =0x20000020 \n"
" LDR R0, [R7] \n"
" ADD R7, R7, 0x4 \n"
" LDR R1, [R7] \n"
" ADD R2, R1, R0 \n"
" ADD R7, R7, 0x4 \n"
" STR R2, [R7]");

a = memLoc3;

for (;;);
}

15.1.4 Inline Assembly in C++ Language

We can also benefit from inline assembly in C++ language via Mbed Studio. We
modify the C code in Listing 15.5 for this purpose and provide the corresponding
C++ code in Listing 15.6. This code performs the same operations as its C
counterpart. The reader can observe its output from the “Output” window in Mbed
Studio.

Listing 15.6 Inline assembly usage for the STM32F4 microcontroller, the C++ code

#include "mbed.h"

#define WAIT_TIME_MS 500

#define memLoc1 (*(unsigned long *)0x20000020)
#define memLoc2 (*(unsigned long *)0x20000024)

unsigned int *memLoc;

unsigned int a = 0;

int main()
{

memLoc1 = 0x3;
memLoc2 = 0x4;

memLoc = (unsigned int *)0x20000020;

printf("memory location value is %X\n", memLoc);
printf("content of the memory location is %X\n", *memLoc);
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printf("\n");

memLoc++;

printf("memory location value is %X\n", memLoc);
printf("content of the memory location is %X\n", *memLoc);
printf("\n");

__asm("LDR R7, =0x20000020 \n"
"LDR R0, [R7] \n"
"ADD R7, R7, 0x4 \n"
"LDR R1, [R7] \n"
"ADD R2, R1, R0 \n"
"ADD R7, R7, 0x4 \n"
"STR R2, [R7]");
memLoc++;

printf("memory location value is %X\n", memLoc);
printf("content of the memory location is %X\n", *memLoc);

a = *memLoc;

printf("a value is %X\n", a);

while (1)
{
thread_sleep_for(WAIT_TIME_MS);
}
}

15.1.5 Inline Assembly in MicroPython

We can use assembly language commands under MicroPython. To do so, we should
add the line @micropython.asm_thumb to our code. Then, we can define an inline
assembly function below this line. Each defined function should be composed
of assembly language instructions. To note here, these are not the exact Arm®

assembly language instructions. For more information on them, please see [1, 2].
We next provide an example on the usage of inline assembly commands in

MicroPython on the STM32F4 microcontroller. We provide the Python code in
Listing 15.7 for this purpose. As can be seen in this code, the red LED on the
STM32F4 board is toggled every second via assembly commands.

Listing 15.7 Toggling the red LED on the STM32F4 board every second via inline assembly, the
MicroPython code

import pyb

@micropython.asm_thumb
def led_on():

movwt(r0, stm.GPIOG)
movw(r1, 1)
lsl(r1, r1, 13)
strh(r1, [r0, stm.GPIO_BSRRL])

@micropython.asm_thumb
def led_off():
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movwt(r0, stm.GPIOG)
movw(r1, 1)
lsl(r1, r1, 13)
strh(r1, [r0, stm.GPIO_BSRRH])

def main():
while True:

led_on()
pyb_delay(2000)
led_off()
pyb_delay(2000)

main()

15.2 Customizing theMicroPython Firmware

As explained in Sect. 9.3, some applications may require modifying the MicroPy-
thon firmware to effectively use RAM or speed up code execution. We will consider
the methods used for this purpose in this section. To do so, we will start with the
necessary settings. Then, we will consider precompiling scripts, frozen bytecode
formation, and adding C functions to the MicroPython firmware.

15.2.1 Necessary Settings to Modify theMicroPython Firmware

In this section, we will explain the steps needed to modify the MicroPython
firmware under Ubuntu. Therefore, the reader needs either a PC with Ubuntu on
it or a Windows OS with Ubuntu virtual machine running on it. As the Ubuntu
environment is ready, we should run the commands given below sequentially to
compile the MicroPython firmware properly:

• “sudo apt-get install build-essential libreadline-dev libffi-dev git pkg-config
gcc-arm-none-eabi libnewlib-arm-none-eabi”—to install necessary packages for
compiling the MicroPython firmware.

• “sudo apt-get install git”—to install git.
• “git clone –recurse-submodules https://github.com/micropython/micropython.

git”—to clone the MicroPython repository to the computer.
• “cd micropython”—to go to the MicroPython folder.
• “make -C mpy-cross”—to compile the code via mpy-cross compiler. After the

compilation is done, mpy-cross executable can be found in the “mpy-cross”
folder.

• “cd ports/stm”—to go to the “stm32” folder.
• “make BOARD=STM32F429DISC”—to compile the MicroPython firmware for

the STM32F4 board.

https://github.com/micropython/micropython.git
https://github.com/micropython/micropython.git
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As all these commands are executed, the MicroPython firmware for the
STM32F4 board will be ready and can be found under the folder “ports/stm32/build-
STM32F429DISC” as “firmware.dfu,” “firmware.elf,” and “firmware.hex” files.
The reader should follow the steps in Chap. 3 to download the firmware to the
STM32F4 board.

15.2.2 Precompiling Scripts Usage

The reader can use the MicroPython code by creating his or her own “.py” files
and uploading them to the microcontroller having MicroPython firmware on it. The
uploaded files are converted to “.mpy” files (consisting of bytecode data) and kept
in the microcontroller RAM. We can decrease the RAM requirement in this method
by precompiling the MicroPython code and loading it directly to the microcontroller
RAM.

We will explain how to precompile a custom module into MicroPython firmware
next. Therefore, create a file named “mymodule.py,” and add the code lines given
below to this file:

def add(a,b):
return a + b

Then, go to the folder “mpy-cross” with the command cd “micropython/mpy-cross.”
Afterward, run the command “./mpy-cross FileDirectory/mymodule.py.” As a result,
the file “mymodule.mpy” will be created under the same folder. Upload this file
to the MicroPython file system. When the commands “import mymodule” and
“mymodule.add(1,2)” are run in the REPL window, the reader can observe the result
as 3.

15.2.3 Frozen Bytecode Usage

The reader can also use the MicroPython code by compiling it along with the
MicroPython firmware. Here, the user modules are kept in flash memory besides
the firmware. Hence, RAM will not be used during the operation. In order to
apply this process, we should first create a folder to keep the files to be frozen
under the folder “micropython/drivers.” Therefore, we should run the command
“mkdir /micropython/drivers/mymodules.” We should next copy the “mymod-
ule.py” file (introduced in the previous section) to the created folder by running
the command “cp mymodule.py /micropython/drivers/mymodules.” Finally, we
should go to the folder “micropython/ports/stm32/boards/” and open the read-
only file “manifest.py” with the command “gedit manifest.py.” This is the file
that shows the files to be frozen into the MicroPython firmware. Add the line
“freeze(“$(MPY_DIR)/drivers/mymodules”, “mymodule.py”) at the bottom of this
file. Then, save and close it.
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Now, we are ready to compile the MicroPython firmware with the module we
have added. Therefore, go to the folder “ports/stm32” with the command “cd
ports/stm32,” and run the command “make BOARD=STM32F429DISC” there. If
the MicroPython firmware has been compiled before, only the made change will
be added to the firmware. Otherwise, the overall compilation process will be done.
Afterward, the MicroPython firmware for the STM32F4 board will be ready. The
reader should follow the steps in Chap. 3 to download it to the STM32F4 board.
When the commands “import mymodule” and “mymodule.add(1,2)” are run in the
REPL window, the reader can observe the result as 3.

15.2.4 Adding C Functions toMicroPython

We can also add custom C functions to the MicroPython firmware. This pro-
cess has been explained in detail in https://docs.micropython.org/en/latest/develop/
cmodules.html. We kindly ask the reader to visit this web site for the necessary steps
to be followed.

15.3 Mbed Simulator

Arm® provided an online tool to simulate Mbed. Hence, Mbed can be used without
an actual board. The web site for the Mbed simulator is at https://simulator.mbed.
com/. There are several available demonstration codes in this web site. Hence, the
reader can test his or her ideas by taking one of these codes and modifying it
accordingly. We also provided extra codes to work on the Mbed simulator on the
topics explained in this book. The reader can reach them in a separate folder under
the accompanying book web site.

Mbed simulator can also be used offline. To do so, the reader should construct
the simulator on PC. This can be done by following the steps explained in https://os.
mbed.com/blog/entry/introducing-mbed-simulator/. We strongly suggest the reader
to benefit from Mbed simulator either in online or offline form.
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32F429IDISCOVERY kit, 17

A
Accuracy, 114
Active high, 55
Active low, 55
Active mode, 97, 100
Adaptive real-time (ART), 296
Address bus, 295
Advanced high-performance bus (AHB), 293,

423
Advanced microcontroller bus architecture

(AMBA), 293
Advanced peripheral bus (APB), 293
Analog, 155, 455
Analog signal, 5, 156, 455
Analog to digital conversion (ADC), 15, 158,

456, 521
Arduino, 2, 3
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Assembler directive, 555
Assembly language, 2, 3, 16, 64, 555
Asynchronous, 212

B
Backup SRAM, 12
Bank, 12, 321
Bare-metal, 341
Base timer, 119, 120
Battery capacity, 98
Baud rate, 218
Bayer pattern, 520, 522
Bidirectional, 57
Binary coded decimal (BCD), 127
Binary semaphore, 369
Bit rate, 218

Board support package (BSP), 324
Breakpoint, 33
Build, 31
Bus, 293
Bus matrix, 10
Byte-addressable, 295
Bytearray, 513
Bytecode, 43, 308, 562

C
Callback function, 82, 86
CCM, 295
CCR, 12
Central processing unit (CPU), 7
Channel, 312
Chrom-ART accelerator, 422
Chrom-art accelerator controller (DMA2D),

14, 421, 422
Circular mode, 315
C language, 27
Clock, 14, 116
Clock cycle, 17
Clock signal, 113, 159, 213
Clock tick, 14
Closed-loop, 484, 485, 487, 490
Color filter, 520
Color image, 507, 508
Color lookup table (CLUT), 422
Common intermediate format (CIF), 509
Compressed image, 522, 523
Condition flag, 11
Contact closure, 54
Continuous mode, 163
Controller area network (CAN), 15, 260
Controller design, 489
Convolution sum, 466
Core register, 10
Counter, 118
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Counting mode, 121
Counting semaphore, 369
Crystal oscillator, 114, 115

D
Data bus, 294
Data chunk, 211
Data encoding, 215
Data register, 62
Data type, 157
DC motor, 82, 483, 497
Debug, 31
Debug access port (DAP), 8
Decode stage, 17
Deep sleep mode, 100
Demosaicing, 523
Denoising, 521
Difference equation, 466
Differential line, 214
Differentiator, 491
Digital, 155, 455
Digital camera interface (DCMI), 15, 521, 528
Digital communication, 15
Digital control, 483
Digital image, 520
Digital I/O, 54
Digital signal, 5, 156, 455
Digital signal processing (DSP), 483
Digital system, 465, 483
Digital to analog converter (DAC), 15, 187,

198
Diode, 62
Direct memory access (DMA), 13, 14, 311,

422
Discontinuous mode, 163
Discrete-time Fourier transform (DTFT), 467,

468
Discrete fourier transform (DFT), 468
Disposable battery, 98
Dithering, 422
Duty cycle, 189
Dynamic memory allocation, 406

E
Edge detector, 82
Electromotive force (EMF), 61
Embedded Linux, 2
Embedded system, 1
Embedded trace macrocell (ETM), 9
Emissive, 415
Encoder, 498
Energy harvesting, 1

Equalizer, 472
Error signal, 487
Event, 83, 342, 343, 360
Exception, 8, 83
Execute stage, 17
Execution, 31
Expressions window, 33
Extended graphics array (XGA), 509
Extended interrupts and events controller

(EXTI), 84, 86
External memory, 321

F
Fast fourier transform (FFT), 468
Feedback, 484
Fetch stage, 17
Field, 212
Field-programmable gate arrays (FPGA), 2
Filter, 465
FIR filter, 466
Flash, 12, 296
Flash memory, 12
Flexible memory controller (FMC), 14, 15,

321
Floating-point unit (FPU), 8
Four-wire resistive layer, 419
FRAM, 12
Frame, 211, 416, 510
Frame rate, 417
FreeRTOS, 343, 344
Frequency divider, 118, 119
Frozen bytecode, 309, 561, 562
Full duplex, 218
Full-scale range (FSR), 159

G
Garbage collector, 310
Gearbox, 497
General purpose register, 11
Global variable, 33, 298, 307, 311
GPIO, 14
Graphical processing unit (GPU), 2
Graphical user interface (GUI), 441
Grayscale image, 507, 508, 520
Gyroscope, 456

H
Half duplex, 218
Handler mode, 83, 86, 87
Hardware abstraction layer (HAL), 64, 91, 102,

136, 163
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Harvard architecture, 295
Heap, 295
High register, 11
High speed clock, 117
Horizontal back porch, 417
Horizontal front porch, 417
HSYNC, 417

I
I2C, 245
I2S, 235, 287
I2C, 15
I2S, 16, 117
Identification number, 302
Idle task, 342, 343, 348, 349
IIR filter, 466
ILI9341, 418
Image sensor, 520
Impulse response, 465
Inactive state, 349
Independent watchdog (IWDG), 125
Injected mode, 163
Inline assembly, 555, 558–560
Input capture, 122
Instruction bus, 294
Instruction set, 16, 555
Intensity transformation, 547
Internet of things (IoT), 1, 4
Interrupt, 8, 81, 119, 127
Interrupt service routine, 82
IrDA, 220
ITU656, 521

J
JEDEC, 53
Jpeg, 523

K
Kernel, 341, 342
Kernel tick, 343

L
LCD, 5, 415, 416
LCD-TFT display controller (LTDC), 15, 421
Lens, 519
Lens correction, 521
Level shifter, 57
LIN, 220
Line, 416, 510
Linear and time-invariant (LTI), 465

Little-endian, 295
Live expressions, 33
Load, 31
Local variable, 33, 307, 311
Low-pass filter, 188
Low register, 11
Low-voltage differential signaling standard

(LVDS), 521
Low speed clock, 116
Low voltage complementary metal-oxide

semiconductor (LVCMOS), 53
LVTTL, 53

M
Machine language, 16, 17
Mail, 342, 343, 383, 406
Manchester coding, 215
Maskable interrupt, 83
Master, 218
Master in/slave out (MISO), 233
Master out/slave in (MOSI), 233
Mbed, 3, 5, 36
Mbed OS, 343
Mbed RTOS, 347
Mbed simulator, 563
Mbed Studio, 5, 36, 39, 41
Memory, 11
Memory map, 12, 300
Memory mapped IO, 63
Memory pool, 383, 390, 406
Memory protection unit (MPU), 297
Message, 211
Microcontroller, 2
Micro-electromechanical system (MEMS), 471
Micro lens, 519, 522
Microphone, 471
MicroPython, 3, 5, 41, 42, 45
MicroPython firmware, 562
Mobile industry processor interface (MIPI),

417, 521
Multiplexer, 62
Mutex, 342, 343, 369

N
Negative image, 544
Nested vectored interrupt controller (NVIC), 8,

84–87
Neural processing units (NPU), 2
Non-emissive, 415
Non-maskable interrupt, 83
Non return to zero, 215
Non return to zero inverted, 215
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Normal mode, 315
Not slave select (NSS), 233

O
Open-loop, 484, 485
OpenCV, 513, 514
Open systems interconnection (OSI), 260
Optocoupler, 59
Oscillator, 14, 113, 114
Output compare block, 123
OV7670, 519, 522–524

P
Packet, 211
Palette, 422
Parallel data transfer, 212
P controller, 490
Peripheral interface block, 10
Photosensor, 520
PID controller, 490, 491
Pin, 14
Pin layout, 18
Pixel, 416, 507, 520, 531
Pixel clock, 416
Pointer, 298, 300
Port, 14
Power consumption calculator (PCC), 101
Power management, 96
Power supply, 99
Power transformation, 547
Pre-allocated buffer, 310
Precompiling, 309
Precompiling scripts, 561
Processed image, 522, 523
Program counter, 11
Program status register, 11
Project, 29
Proportional integral derivative (PID), 496
Proprietary code readout protection (PCROP),

297
Pull-down resistor, 55, 64
Pull-up resistor, 55, 64
Pulse width modulation (PWM), 123, 124,

187, 188
Python, 3, 41

Q
Quantization, 158, 159, 455
Queue, 342, 343, 383, 406

R
Random access memory (RAM), 12
Raspberry Pi, 2
Raw image, 522
RC oscillator, 114
Read-evaluate-print loop (REPL), 43–45
Read-only memory (ROM), 12
Read protection (RDP), 297
Ready state, 349
Real-time clock (RTC), 15, 119, 127
Real-time operating system (RTOS), 5, 125,

341
Rechargeable battery, 98
Refresh rate, 417
Register, 10
Relay, 59, 61
Release, 31
Repetition counter, 121
Response time, 114
Return to zero, 215
Return to zero inverted, 215
Robot vacuum cleaner, 4
Rshell, 44, 45
Running state, 348

S
Sampling, 158, 455
Sampling frequency, 159, 457
Sampling period, 159
Sampling rate, 159
Scheduling, 341, 342
Schmitt trigger, 57, 63, 114
SD bus, 285
SD card, 235, 285
Sector, 12
Secure digital input/output interface (SDIO),

16, 285
Semaphore, 342, 343, 369
Serial audio interface (SAI), 15, 117
Serial clock (SCLK), 233
Serial data transfer, 212
Serial peripheral interface (SPI), 15, 233
Serial wire viewer (SWV), 9
Shift register, 55, 70
Simplex, 218
Single ended line, 214
Single-shot mode, 163
Slave, 218
Sleep mode, 97, 100
Smartcard, 221
Software timer, 403
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SSCB, 523
Stack, 296
Stack pointer, 11
Standby mode, 100
State, 484
State-space, 484
Static memory allocation, 406
Static RAM (SRAM), 10, 12
Static variable, 298, 307
ST-LINK, 21
STMPE811 touch driver, 420
STM32CubeIDE, 5, 27–29
STM32CubeMX, 27, 34, 36
STM32F4 board, 17, 44
STM32 ST-LINK, 43
Stop mode, 100
Stream, 312
Structure, 304
Successive approximation register (SAR), 162,

165
Supply voltage, 23, 53
Switch bouncing, 54, 55, 70
Synchronization, 114
Synchronous, 212
System bus, 294
System clock, 117
System on chip (SoC), 2
Systemtimer, 119
SysTick, 15, 125, 343

T
Task, 342, 343, 348
Task priority, 348, 349
Task state, 348
Tera Term, 44
Thin film transistor (TFT), 416
Thonny, 45
Thread, 348
Thread mode, 83, 86, 87
Thresholded image, 549
Timer, 15, 118
TouchGFX, 441

Touch screen, 419, 437
Touch sensor, 419
Transfer function, 484, 485
Transistor, 62

U
Unidirectional, 57
Universal asynchronous receiver/transmitter

(UART), 15, 218
Universal serial bus (USB), 274
Universal serial bus on-the-go full-speed (USB

OTG_FS), 15
Universal serial bus on-the-go high-speed

(USB OTG_HS), 15
Universal synchronous/asynchronous

receiver/transmitter (USART), 15, 218
USBOTG, 275

V
Vertical back porch, 417
Vertical front porch, 417
Video graphics array (VGA), 509
Virtual machine, 43
Voltage divider, 57
Voltage level, 53
Voltage regulator, 99
VSYNC, 417

W
Waiting state, 349
Wait state, 296
Watchdog timer, 15, 117, 119, 125
Window watchdog (WWDG), 125

Z
Zero-order hold (ZOH), 187
Ziegler-Nichols, 492
Z-transform, 467
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